Advertisement

Food Allergens pp 263-295 | Cite as

Recent Advances in the Detection of Allergens in Foods

  • Silvia de la Cruz
  • Inés López-Calleja
  • Rosario Martín
  • Isabel González
  • Marcos Alcocer
  • Teresa GarcíaEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1592)

Abstract

Food allergy is a public health issue that has significantly increased worldwide in the past decade affecting consumers’ quality of life and making increasing demands on health service resources. Despite recent advances in many areas of diagnosis and treatment, our general knowledge of the basic mechanisms of the disease remained limited, i.e., not at pace with the exponential number of new cases and the explosion of the new technologies. For sensitized individuals, the only effective way to prevent allergic reactions is the strict avoidance of the offending food. For this reason, a number of regulatory bodies in several countries have recognized the importance of providing information about the presence of food allergens by enacting laws, regulations, or standards for food labeling of “priority allergens.” This has resulted in the need for the development of analytical methods for protection of food-allergic consumers that should be among others highly specific, sensitive, and not influenced by the presence of the food matrix components. Several analytical approaches target either the allergen itself or a corresponding allergen marker such as peptide fragment or gene segment and have been used in the detection and quantification of allergens in food products. In this short review, some of the conventional and new methods for the detection of allergens in food are listed and briefly discussed.

Key words

Food allergy Allergens Sensitization Analytical methods ELISA Mass spectrometry 

Notes

Acknowledgment

López-Calleja and de la Cruz Ares were supported by Ministerio de Economía y Competitividad of Spain (Grant No. AGL 2013-48018-R). Silvia de la Cruz is also recipient of a fellowship from the Ministerio de Educación, Cultura y Deporte of Spain (AP2010-0028).

References

  1. 1.
    Cianferon A, Spergel JM (2009) Food allergy: review, classification and diagnosis. Allergol Int 58:457–466CrossRefGoogle Scholar
  2. 2.
    Lieberman JA, Sicherer SH (2010) The diagnosis of food allergy. Am J Rhinol Allergy 24:439–443PubMedCrossRefGoogle Scholar
  3. 3.
    Burks AW, Tang M, Sicherer S, Muraro A, Eigenmann PA, Ebisawa M et al (2012) ICON: food allergy. J Allergy Clin Immunol 129:906–920PubMedCrossRefGoogle Scholar
  4. 4.
    Rona R, Keil T, Summers C, Gislason D, Zuidmeer L, Sodergren E et al (2007) The prevalence of food allergy: a meta-analysis. J Allergy Clin Immunol 120:638–646PubMedCrossRefGoogle Scholar
  5. 5.
    Zuidmeer L, Goldhahn K, Rona RJ, Gislason D, Madsen C, Summers C et al (2008) The prevalence of plant food allergies: a systematic review. J Allergy Clin Immunol 121:1210–1218PubMedCrossRefGoogle Scholar
  6. 6.
    Madsen CB, Hattersley S, Buck J, Gendel SM, Houben GF, Hourihane JO et al (2009) Approaches to risk assessment in food allergy: report from a workshop developing a framework for assessing the risk from allergenic foods. Food Chem Toxicol 47:480–489PubMedCrossRefGoogle Scholar
  7. 7.
    Kanny G, Moneret-Vautrin DA, Flabbee J, Beaudouin E, Morisset M, Thevenin F (2001) Population study of food allergy in France. J Allergy Clin Immunol 108:133–140PubMedCrossRefGoogle Scholar
  8. 8.
    Sastre J (2010) Molecular diagnosis in allergy. Clin Exp Allergy 40:1442–1460PubMedCrossRefGoogle Scholar
  9. 9.
    Gadermaier G, Hauser M, Egger M, Ferrara R, Briza P, Souza Santos K et al (2011) Sensitization prevalence, antibody cross-reactivity and immunogenic peptide profile of Api g 2, the non-specific lipid transfer protein 1 of celery. PLoS One 6:24150CrossRefGoogle Scholar
  10. 10.
    Boyce J, Assa’ad A, Burks A, Jones S, Sampson H, Wood R et al (2011) Guidelines for the diagnosis and management of food allergy in the United States: summary of the NIAID-sponsored expert panel report. J Allergy Clin Immunol 126:S1–S58Google Scholar
  11. 11.
    Taylor SL, Nordlee JA, Niemann LM, Lambrecht DM (2009) Allergen immunoassays – considerations for use of naturally incurred standards. Anal Bioanal Chem 395:83–92PubMedCrossRefGoogle Scholar
  12. 12.
    Taylor S, Moneret-Vautrin D, Crevel R, Sheffield D, Morisset M, Dumont P et al (2010) Threshold dose for peanut: risk characterization based upon diagnostic oral challenge of a series of 286 peanut-allergic individuals. Food Chem Toxicol 48:814–819PubMedCrossRefGoogle Scholar
  13. 13.
    Sicherer S, Sampson H (2010) Food allergy. J Allergy Clin Immunol 125:116–125CrossRefGoogle Scholar
  14. 14.
    Kauffman HF, Tamm M, Timmerman JAB, Borger P (2006) House dust mite major allergens Der p 1 and Der p 5 activate human airway-derived epithelial cells by protease-dependent and protease-independent mechanisms. Clin Mol Allergy 4:5–5PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Trompette A, Divanovic S, Visintin A, Blanchard C, Hegde RS, Madan R et al (2009) Allergenicity resulting from functional mimicry of a Toll-like receptor complex protein. Nature 457:585–588PubMedCrossRefGoogle Scholar
  16. 16.
    Alcocer MJC, de la Cruz S, López-Calleja I (2016) Recent advances in food allergy. Braz J Food Technol 19:e2016047CrossRefGoogle Scholar
  17. 17.
    Metcalfe DD, Astwood JD, Townsend R, Sampson HA, Taylor SL, Fuchs RL (1996) Assessment of the allergenic potential of foods derived from genetically engineered crop plants. Crit Rev Food Sci Nutr 36:S165–S186PubMedCrossRefGoogle Scholar
  18. 18.
    Cochrane S, Salt LJ, Wantling E, Rogers A, Coutts J, Ballmer-Weber BK et al (2012) Development of a standardized low-dose double-blind placebo-controlled challenge vehicle for the EuroPrevall project. Allergy 67:17–113CrossRefGoogle Scholar
  19. 19.
    Bindslev-Jensen C, Briggd D, Osterballe M (2002) Can we determine a threshold level for allergenic foods by statistical analysis of published data in the literature? Allergy 57:741–746PubMedCrossRefGoogle Scholar
  20. 20.
    Codex Alimentarius (1999) Codex general standard for the labelling of pre-packaged foods. FAO/WHO, GenevaGoogle Scholar
  21. 21.
    Gendel SM (2012) Comparison of international food allergen labeling regulations. Regul Toxicol Pharmacol 63:279–285PubMedCrossRefGoogle Scholar
  22. 22.
    Hefle SL, Nordlee JA, Taylor SL (1996) Allergenic foods. Crit Rev Food Sci Nutr 36:S69–S89PubMedCrossRefGoogle Scholar
  23. 23.
    Reus KE, Houben GF, Stam M, Dubois AE (2000) Food additives as a cause of medical symptoms: relationship shown between sulfites and asthma and anaphylaxis; results of a literature review. Ned Tijdschr Geneeskd 144:1836–1839PubMedGoogle Scholar
  24. 24.
    Alvarez PA, Boye JI (2012) Food production and processing considerations of allergenic food ingredients: a review. J Allergy 2012:746125CrossRefGoogle Scholar
  25. 25.
    Bremer MGEG, Smits NGE, Haasnoot W (2009) Biosensor immunoassays for traces of hazelnut protein in olive oil. Anal Bioanal Chem 395:119–126PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Pollet J, Delport F, Janssen KPF, Tran DT, Wouters J, Verbiest T et al (2011) Fast and accurate peanut allergen detection with nanobead enhanced optical fiber SPR biosensor. Talanta 83:1436–1441PubMedCrossRefGoogle Scholar
  27. 27.
    Trashin S, Cucu T, Devreese B, Adriaens A, De Meulenaer B (2011) Development of a highly sensitive and robust Cor a 9 specific enzyme-linked immunosorbent assay for the detection of hazelnut traces. Anal Chim Acta 708:116–122PubMedCrossRefGoogle Scholar
  28. 28.
    Kerbach S, Alldrick AJ, Crevel RWR, Dömötör L, DunnGalvin A, Mills CEN et al (2009) Managing food allergens in the food supply chain – viewed from different stakeholder perspectives. Qual Assur Saf Crop 1:50–60CrossRefGoogle Scholar
  29. 29.
    Lockley AK, Bardsley RG (2000) DNA-based methods for food authentication. Trends Food Sci Technol 11:67–77CrossRefGoogle Scholar
  30. 30.
    Mafra I, Ferreira IMPLVO, Oliveira MBPP (2008) Food authentication by PCR-based methods. Eur Food Res Technol 227:649–665CrossRefGoogle Scholar
  31. 31.
    Rice JA, Lupo AJ (2014) Immunodiagnostics in food allergen testing. In: Siragakis G, Kizis D (eds) Food allergen testing: molecular, immunochemical and chromatographic techniques. John Wiley & Sons, New York, NY, pp 13–28Google Scholar
  32. 32.
    Ćirković-Veličković T, Gavrović-Jankulović M (2014) Methods for allergen identification and quantification in food matrices. In: Ćirković-Veličković T, Gavrović-Jankulović M (eds) Food allergens, food microbiology and food safety. Springer, New York, NY, pp 77–93Google Scholar
  33. 33.
    Smith KA, Nelson PN, Warren P, Astley SJ, Murray PG, Greenman J (2004) Demystified...recombinant antibodies. J Clin Pathol 57:912–917PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Szeto K, Latulippe DR, Ozer A, Pagano JM, White BS, Shalloway D et al (2013) RAPID-SELEX for RNA aptamers. PLoS One 8:e82667PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Toh SY, Citartan M, Gopinath SCB, TangTH (2015) Aptamers as a replacement for antibodies in enzyme-linked immunosorbent assay. Biosens Bioelectron 64:392–403Google Scholar
  36. 36.
    Sathe SK, Teuber SS, Roux KH (2005) Effects of food processing on the stability of food allergens. Biotechnol Adv 23:423–429PubMedCrossRefGoogle Scholar
  37. 37.
    Paschke A (2009) Aspects of food processing and its effect on allergen structure. Mol Nutr Food Res 53:959–962PubMedCrossRefGoogle Scholar
  38. 38.
    Diaz-Amigo C (2010) Antibody-based detection methods: from theory to practice. In: Popping B, Diaz-Amigo C, Hoenicke K (eds) Molecular biological and immunological techniques and applications for food chemists. John Wiley & Sons, New York, NY, pp 223–245Google Scholar
  39. 39.
    Lee P, Taylor SL (2011) Fish, crustaceans, and mollusks. In: van Hengel AJ (ed) Food allergens. Analysis instrumentation and methods. Taylor and Francis Group, LLC, Oxfordshire, pp 177–205Google Scholar
  40. 40.
    van Hengel AJ (2007) Food allergen detection methods and the challenge to protect food-allergic consumers. Anal Bioanal Chem 389:111–118PubMedCrossRefGoogle Scholar
  41. 41.
    Thompson M, Ellison SLR, Wood R (2002) Harmonized guidelines for single-laboratory validation of methods of analysis (IUPAC technical report). Pure Appl Chem 74:835–855CrossRefGoogle Scholar
  42. 42.
    Schubert-Ullrich P, Rudolf J, Ansari P, Galler B, Führer M, Molinelli A et al (2009) Commercialized rapid immunoanalytical tests for determination of allergenic food proteins: an overview. Anal Bioanal Chem 395:69–81PubMedCrossRefGoogle Scholar
  43. 43.
    Haasnoot W, Smits N, Kemmers-Voncken A, Bremer M (2004) Fast biosensor immunoassays for the detection of cows’ milk in the milk of ewes and goats. J Dairy Res 71:322–329PubMedCrossRefGoogle Scholar
  44. 44.
    Warriner K, Reddy SM, Namvar A, Neethirajan S (2014) Developments in nanoparticles for use in biosensors to assess food safety and quality. Trends Food Sci Technol 40:183–199CrossRefGoogle Scholar
  45. 45.
    Billakanti JM, Fee CJ, Lane FR, Kash AS, Fredericks R (2010) Simultaneous, quantitative detection of five whey proteins in multiple samples by surface plasmon resonance. Int Dairy J 20:96–105CrossRefGoogle Scholar
  46. 46.
    Rebe Raz S, Liu H, Norde W, Bremer MGEG (2010) Food allergens profiling with an imaging surface plasmon resonance-based biosensor. Anal Chem 82:8485–8491PubMedCrossRefGoogle Scholar
  47. 47.
    Yman IM, Eriksson A, Johansson MA, Hellens K-E (2006) Food allergen detection with biosensor immunoassays. J AOAC Int 89:856–861PubMedGoogle Scholar
  48. 48.
    Godoy-Navajas J, Aguilar Caballos MP, Gómez-Hens A (2011) Heterogeneous immunoassay for soy protein determination using nile blue-doped silica nanoparticles as labels and front-surface long-wavelength fluorimetry. Anal Chim Acta 701:194–199PubMedCrossRefGoogle Scholar
  49. 49.
    Wang W, Han J, Wu Y, Yuan F, Chen Y, Ge Y (2011) Simultaneous detection of eight food allergens using optical thin-film biosensor chips. J Agric Food Chem 59:6889–6894PubMedCrossRefGoogle Scholar
  50. 50.
    Cao Q, Zhao H, Yang Y, He Y, Ding N, Wang J, Wu Z, Xiang K, Wang G (2011) Electrochemical immunosensor for casein based on gold nanoparticles and poly(L-arginine)/multi-walled carbon nanotubes composite film functionalized interface. Biosens Bioelectron 26:3469–3474PubMedCrossRefGoogle Scholar
  51. 51.
    Eissa S, Tlili C, L’Hocine L, Zourob M (2012) Electrochemical immunosensor for the milk allergen β-lactoglobulin based on electrografting of organic film on graphene modified screen-printed carbon electrodes. Biosens Bioelectron 38:308–313PubMedCrossRefGoogle Scholar
  52. 52.
    Yang C, Gu B, Xu C, Xu X (2011) Self-assembled ZnO quantum dot bioconjugates for direct electrochemical determination of allergen. J Electroanal Chem 660:97–100CrossRefGoogle Scholar
  53. 53.
    Jiang D, Ji J, An L, Sun X, Zhang Y, Zhang G, Tang L (2013) Mast cell-based electrochemical biosensor for quantification of the major shrimp allergen Pen a 1 (tropomyosin). Biosens Bioelectron 50:150–156PubMedCrossRefGoogle Scholar
  54. 54.
    Huang Y, Bell MC, Suni II (2008) Impedance biosensor for peanut protein Ara h 1. Anal Chem 80:9157–9161PubMedCrossRefGoogle Scholar
  55. 55.
    Huang Y, Suni II (2008) Degenerate Si as an electrode material for electrochemical biosensors. J Electrochem Soc 155:J350–J354CrossRefGoogle Scholar
  56. 56.
    Singh R, Sharma PP, Baltus RE, Suni II (2010) Nanopore immunosensor for peanut protein Ara h 1. Sens Actuat B Chem 145:98–103CrossRefGoogle Scholar
  57. 57.
    Xiulan S, Yinzhi Z, Jingdong S, Liyan S, He Q, Weijuan Z (2010) A quartz crystal microbalance-based Immunosensor for shrimp allergen determination in food. Eur Food Res Technol 231:563–570CrossRefGoogle Scholar
  58. 58.
    Chu PT, Lin CS, Chen WJ, Chen CF, Wen HW (2012) Detection of gliadin in foods using a quartz crystal microbalance biosensor that incorporates gold nanoparticles. J Agric Food Chem 60:6483–6492PubMedCrossRefGoogle Scholar
  59. 59.
    Picariello G, Mamone G, Addeo F, Ferranti P (2011) The frontiers of mass spectrometry-based techniques in food allergenomics. J Chromatogr A 1218:7386–7398PubMedCrossRefGoogle Scholar
  60. 60.
    Cifuentes A (2013) Foodomics: principles and applications. In: Cifuentes A (ed) Foodomics: advanced mass spectrometry in modern food science and nutrition. John Wiley & Sons, Inc., New York, pp 1–13CrossRefGoogle Scholar
  61. 61.
    Kirsch S, Fourdrilis S, Dobson R, Scippo ML, Maghuin-Rogister G, De Pauw E (2009) Quantitative methods for food allergens: a review. Anal Bioanal Chem 395:57–67PubMedCrossRefGoogle Scholar
  62. 62.
    Christofakis M, Xila A (2014) Immunodiagnostics in food allergen testing. In: Siragakis G, Kizis D (eds) Food allergen testing: molecular, immunochemical and chromatographic techniques. John Wiley & Sons, New York, NY, pp 50–65Google Scholar
  63. 63.
    Monaci L, Visconti A (2009) Mass spectrometry-based proteomics methods for analysis of food allergens. Trends Anal Chem 28:581–591CrossRefGoogle Scholar
  64. 64.
    Gallardo JM, Carrera M, Ortea I (2013) Proteomics in food science. In: Cifuentes A (ed) Foodomics: advanced mass spectrometry in modern food science and nutrition. John Wiley & Sons, Inc., New York, pp 125–165CrossRefGoogle Scholar
  65. 65.
    Catherman AD, Skinner OS, Kelleher NL (2014) Top down proteomics: facts and perspectives. Biochem Biophys Res Commun 445:683–693PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Mattarozzi M, Bignardi C, Elviri L, Careri M (2012) Rapid shotgun proteomic liquid chromatography − electrospray ionization − tandem mass spectrometry-based method for the lupin (Lupinus albus L.) multi-allergen determination in foods. J Agric Food Chem 60:5841–5846PubMedCrossRefGoogle Scholar
  67. 67.
    Pedreschi R, Nørgaard J, Maquet A (2012) Current challenges in detecting food allergens by shotgun and targeted proteomic approaches: a case study on traces of peanut allergens in baked cookies. Nutrients 4:132–150PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Meissner F, Mann M (2014) Quantitative shotgun proteomics: considerations for a high-quality workflow in immunology. Nat Immunol 15:112–117PubMedCrossRefGoogle Scholar
  69. 69.
    Monaci L, Losito I, Palmisano F, Visconti A (2010) Identification of allergenic milk proteins markers in fined white wines by capillary liquid chromatography-electrospray ionization-tandem mass spectrometry. J Chromatogr A 1217:4300–4305PubMedCrossRefGoogle Scholar
  70. 70.
    Fæste CK, Rønning HT, Christians U, Granum PE (2011) Liquid chromatography and mass spectrometry in food allergen detection. J Food Prot 74:316–345PubMedCrossRefGoogle Scholar
  71. 71.
    Fanali C, Dugo L, Dugo P, Mondello L (2013) Capillary-liquid chromatography (CLC) and nano-LC in food analysis. Trends Anal Chem 52:226–238CrossRefGoogle Scholar
  72. 72.
    Weber D, Raymond P, Ben-Rejeb S, Lau B (2006) Development of a liquid chromatography-tandem mass spectrometry method using capillary liquid chromatography and nanoelectrospray ionization-quadrupole time-of-flight hybrid mass spectrometer for the detection of milk allergens. J Agric Food Chem 54:1604–1610PubMedCrossRefGoogle Scholar
  73. 73.
    Monaci L, Losito I, Palmisano F, Visconti A (2011) Reliable detection of milk allergens in food using a high-resolution, stand-alone mass spectrometer. J AOAC Int 94:1034–1042PubMedGoogle Scholar
  74. 74.
    Heick J, Fischer M, Kerbach S, Tamm U, Popping B (2011) Application of a liquid chromatography tandem mass spectrometry method for the simultaneous detection of seven allergenic foods in flour and bread and comparison of the method with commercially available ELISA test kits. J AOAC Int 94:1060–1068PubMedGoogle Scholar
  75. 75.
    Chassaigne H, Nørgaard JV, van Hengel AJ (2007) Proteomics-based approach to detect and identify major allergens in processed peanuts by capillary LC-Q-TOF (MS/MS). J Agric Food Chem 55:4461–4473PubMedCrossRefGoogle Scholar
  76. 76.
    Di Bernardo G, Del Gaudio S, Galderisi U, Cascino A, Cipollaro M (2007) Comparative evaluation of different DNA extraction procedures from food samples. Biotechnol Prog 23:297–301PubMedCrossRefGoogle Scholar
  77. 77.
    Di Bernardo G, Galderisi U, Cipollaro M, Cascino A (2005) Methods to improve the yield and quality of DNA from dried and processed figs. Biotechnol Prog 21:546–549PubMedCrossRefGoogle Scholar
  78. 78.
    Kirsh S, Fourdrilis S, Dobson R, Scippo ML, Maghuin-Rogister G, De Pauw E (2009) Quantitative methods for food allergens: a review. Anal Bioanal Chem 395:57–67CrossRefGoogle Scholar
  79. 79.
    López-Calleja IM, González I, Fajardo V, Martín I, Hernández PE, García T et al (2007) Quantitative detection of goats’ milk in sheep’s milk by real-time PCR. Food Control 18:1466–1473CrossRefGoogle Scholar
  80. 80.
    Poms RE, Klein CL, Anklam E (2004) Methods for allergen analysis in food: a review. Food Addit Contam 21:1–31PubMedCrossRefGoogle Scholar
  81. 81.
    Brzezinski JL (2006) Detection of cashew nut DNA in spiked baked goods using a real-time polymerase chain reaction method. J AOAC Int 89:1035–1038PubMedGoogle Scholar
  82. 82.
    Brezna B, Kuchta T (2008) A novel real-time polymerase chain reaction method for the detection of pecan nuts in food. Eur Food Res Technol 226:373–377CrossRefGoogle Scholar
  83. 83.
    Brezna B, Dudánová H, Kuchta T (2008) A novel real-time polymerase chain reaction method for the qualitative detection of pistachio in food. Eur Food Res Technol 228:197–203CrossRefGoogle Scholar
  84. 84.
    Brezna B, Dudásová H, Kuchta T (2010) A novel real-time polymerase chain reaction method for the detection of Brazil nuts in food. J AOAC Int 93:197–201PubMedGoogle Scholar
  85. 85.
    Brezna B, Hudecova L, Kuchta T (2006) A novel real-time polymerase chain reaction (PCR) method for the detection of walnuts in food. Eur Food Res Technol 223:373–377CrossRefGoogle Scholar
  86. 86.
    Brezna B, Piknova L, Kuchta T (2009) A novel real-time polymerase chain reaction method for the detection of macadamia nuts in food. Eur Food Res Technol 229:397–401CrossRefGoogle Scholar
  87. 87.
    López-Calleja IM, de la Cruz S, González I, García T, Martin R (2014) Survey of undeclared allergenic pistachio (Pistacia vera) in commercial foods by hydrolysis probe real-time PCR. Food Control 39:49–55CrossRefGoogle Scholar
  88. 88.
    López-Calleja IM, de la Cruz S, González I, García T, Martin R (2015) Market analysis of food products for detection of allergenic walnut (Juglans regia) and pecan (Carya illinoinensis) by real-time PCR. Food Chem 177:111–119PubMedCrossRefGoogle Scholar
  89. 89.
    López-Calleja IM, de la Cruz S, Pegels N, González I, García T, Martin R (2013) Development of a real time PCR assay for detection of allergenic trace amounts of peanut (Arachis hypogaea) in processed foods. Food Control 30:480–490CrossRefGoogle Scholar
  90. 90.
    López-Calleja IM, de la Cruz S, Pegels N, González I, García T, Martin R (2013) High resolution TaqMan real-time PCR approach to detect hazelnut DNA encoding for ITS rDNA in foods. Food Chem 141:1872–1880PubMedCrossRefGoogle Scholar
  91. 91.
    Pafundo S, Gullì M, Marmiroli N (2009) SYBR GreenER real-time PCR to detect almond in traces in processed food. Food Chem 116:811–815CrossRefGoogle Scholar
  92. 92.
    Platteau C, De Loose M, De Meulenaer B, Taverniers I (2011) Detection of allergenic ingredients using real-time PCR: a case study on hazelnut (Corylus avellana) and soy (Glicine max). J Agric Food Chem 59:10803–10814PubMedCrossRefGoogle Scholar
  93. 93.
    Scaravell E, Brohee M, Marchelli R, Van Henge A (2008) Development of three real-time PCR assays to detect peanut allergen residue in processed food products. Eur Food Res Technol 227:857–869CrossRefGoogle Scholar
  94. 94.
    Hupfer C, Waiblinger HU, Busch U (2007) Development and validation of a real-time PCR detection method for celery in food. Eur Food Res Technol 225:329–335CrossRefGoogle Scholar
  95. 95.
    Mujico JR, Lombardia M, Carmen MM, Mendez E, Albar JP (2011) A highly sensitive real-time PCR system for quantification of wheat contamination in gluten-free food for celiac patients. Food Chem 128:795–801CrossRefGoogle Scholar
  96. 96.
    Hirao T, Imai S, Sawada H, Shiomi N, Hachimura S, Kato H (2005) PCR method for detecting trace amounts of buckwheat (Fagopyrum sp.). Food Biosci Biotechnol Biochem 69:724–731PubMedCrossRefGoogle Scholar
  97. 97.
    Demmel A, Hupfer C, Ilg Hampe E, Busch U, Engel KH (2008) Development of a real-time PCR for the detection of lupine DNA (Lupinus species) in foods. J Agric Food Chem 56:4328–4332PubMedCrossRefGoogle Scholar
  98. 98.
    Ehlert A, Hupfer C, Demmel A, Engel KH, Busch U (2008) Detection of cashew nut in foods by a specific real-time PCR method. Food Anal Methods 1:136–143CrossRefGoogle Scholar
  99. 99.
    Ehlert A, Moreano F, Busch U, Engel KH (2008) Development of a modular system for detection of genetically modified organisms in food based on ligation-dependent probe amplification. Eur Food Res Technol 227:805–812CrossRefGoogle Scholar
  100. 100.
    de la Cruz S, López-Calleja IM, Alcocer MJC, González I, Martín R, García T (2013) Taqman real-time PCR assay for detection of traces of Brazil nut (Bertholletia excelsa) in food products. Food Control 33:105–113CrossRefGoogle Scholar
  101. 101.
    Koppel R, Dvorak V, Zimmerli F, Breitenmoser A, Eugster A, Waiblinger HU (2010) Two tetraplex real-time PCR for the detection and quantification of DNA from eight allergens in food. Eur Food Res Technol 230:367e374Google Scholar
  102. 102.
    Hashimoto H, Makabe Y, Hasegawa Y, Sajiki J, Miyamoto F (2007) Detection of allergenic substances in foods by a multiplex PCR method. J Food Hyg Soc Jpn 48:132–138CrossRefGoogle Scholar
  103. 103.
    Moreano F, Ehlert A, Busch U, Engel KH (2006) Ligation-dependent probe amplification for the simultaneous event-specific detection and relative quantification of DNA from two genetically modified organisms. Eur Food Res Technol 222:479–485CrossRefGoogle Scholar
  104. 104.
    Ehlert A, Demmel A, Hupfer C, Busch U, Engel KH (2009) Simultaneous detection of DNA from 10 food allergens by ligation-dependent probe amplication. Food Addit Contam 26:409–418CrossRefGoogle Scholar
  105. 105.
    Mustorp SL, Dromtorp SM, Holck AL (2011) Multiplex, quantitative, ligation-dependent probe amplification for determination of allergens in food. J Agric Food Chem 59:5231–5239PubMedCrossRefGoogle Scholar
  106. 106.
    Sun X, Guan L, Shan X, Zhang Y, Li Z (2012) Electrochemical detection of peanut allergen Ara h 1 using a sensitive DNA biosensor based on stem–loop probe. J Agric Food Chem 60:10979–10984PubMedCrossRefGoogle Scholar
  107. 107.
    Berti F, Laschi S, Palchetti I, Rossier JS, Reymond F, Mascini M, Marrazza G (2009) Microfluidic-based electrochemical genosensor coupled to magnetic beads for hybridization detection. Talanta 77:971–978PubMedCrossRefGoogle Scholar
  108. 108.
    Tortajada-Genaro LA, Santiago-Felipe S, Morais S, Gabaldón JA, Puchades R, Maquieira Á (2012) Multiplex DNA detection of food allergens on a digital versatile disk. J Agric Food Chem 60:36–43PubMedCrossRefGoogle Scholar
  109. 109.
    Bettazzi F, Lucarelli F, Palchetti I, Berti F, Marrazza G, Mascini M (2008) Disposable electrochemical DNA-array for PCR amplified detection of hazelnut allergens in foodstuffs. Anal Chim Acta 614:93–102PubMedCrossRefGoogle Scholar
  110. 110.
    Rossi S, Scaravelli E, Germini A, Corradini R, Fogher C, Marchelli R (2006) A PNA-array platform for the detection of hidden allergens in foodstuffs. Eur Food Res Technol 223:1–6CrossRefGoogle Scholar
  111. 111.
    Santos AFG, Toit D, Douiri A, Radulovic S, Stephens A, Turcanu V et al (2015) Distinct parameters of the basophil activation test reflect the severity and threshold of allergic reactions to peanut. J Allergy Clin Immunol 135:179–186PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Prescott S, Allen KJ (2011) Food allergy: Riding the second wave of the allergy epidemic. Pediatr Allergy Immunol 22:155–160PubMedCrossRefGoogle Scholar
  113. 113.
    Sicherer SH, Sampson HA (2014) Food allergy: epidemiology, pathogenesis, diagnosis, and treatment. J Allergy Clin Immunol 133:291–307PubMedCrossRefGoogle Scholar
  114. 114.
    Leonard SA, Sampson HA, Sicherer SH, Noone S, Moshier EL, Godbold J et al (2012) Dietary baked egg accelerates resolution of egg allergy in children. J Allergy Clin Immunol 130:473–480PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Anagnostou K, Islam S, King Y, Foley L, Pasea L, Bond S et al (2014) Assessing the efficacy of oral immunotherapy for the desensitisation of peanut allergy in children (STOP II): a phase 2 randomised controlled trial. Lancet 383:1297–1304PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Du Toit G, Roberts G, Sayre PH, Bahnson HT, Radulovic S, Santos AF et al (2015) Randomized trial of peanut consumption in infants at risk for peanut allergy. N Engl J Med 372:803–813PubMedCrossRefGoogle Scholar
  117. 117.
    James D, Schmidt AM (2004) Use of an intron region of a chloroplast tRNA gene (trnL) as a target for PCR identtification of specific food crops including sources of potencial allergens. Food Res Int 37:395–402CrossRefGoogle Scholar
  118. 118.
    Watanabe S, Akiyama H, Maleki S, Yamakawa H, Iijima K, Yamazaki F et al (2006) A specific qualitative detection method for peanut (Arachis hypogaea) in foods using polymerase chain reaction. J Food Biochem 30:215–233CrossRefGoogle Scholar
  119. 119.
    Hird H, Lloyd J, Goodier R, Brown J, Reece P (2003) Detection of peanut using real-time polymerase chain reaction. Eur Food Res Technol 217:265–268CrossRefGoogle Scholar
  120. 120.
    Stephan O, Vieths S (2004) Development of a real-time PCR and a sandwich ELISA for detection of potentially allergenic trace amounts of peanut (Arachis hypogaea) in processed foods. J Agric Food Chem 52:3754–3760PubMedCrossRefGoogle Scholar
  121. 121.
    Scaravelli E, Brohee M, Marchelli R, van Hengel A (2008) Development of three real-time PCR assays to detect peanut allergen residue in processed food products. Eur Food Res Technol 227:857–869CrossRefGoogle Scholar
  122. 122.
    López-Calleja IM, de la Cruz S, Pegels N, González I, Martín R, García T (2014) Sensitive and specific detection of almond (Prunus dulcis) in commercial food products by real-time PCR. LWT Food Sci Technol 56:31–39CrossRefGoogle Scholar
  123. 123.
    Holzhauser T, Stephan O, Vieths S (2002) Detection of potentially allergenic hazelnut (Corylus avellana) residues in food: a comparative study with DNA PCR-ELISA and protein sandwich-ELISA. J Agric Food Chem 50:5808–5815PubMedCrossRefGoogle Scholar
  124. 124.
    Germini A, Scaravelli E, Lesignoli F, Sforza S, Corradini R, Marchelli R (2005) Polymerase chain reaction coupled with peptide nucleic acid high-performance liquid chromatography for the sensitive detection of traces of potentially allergenic hazelnut in foodstuffs. Eur Food Res Technol 220:619–624CrossRefGoogle Scholar
  125. 125.
    Holzhauser T, Wangorsch A, Vieths S (2000) Polymerase chain reaction (PCR) for detection of potentially allergenic hazelnut residues in complex food matrixes. Eur Food Res Technol 211:360–365CrossRefGoogle Scholar
  126. 126.
    Herman L, Block JD, Viane R (2003) Detection of hazelnut DNA traces in chocolate by PCR. Int J Food Sci Technol 38:633–640CrossRefGoogle Scholar
  127. 127.
    Arlorio M, Cereti E, Coïsson JD, Travaglia F, Martelli A (2007) Detection of hazelnut (Corylus spp.) in processed foods using real-time PCR. Food Control 18:140–148CrossRefGoogle Scholar
  128. 128.
    Piknová L, Pangallo D, Kuchta T (2008) A novel real-time polymerase chain reaction (PCR) method for the detection of hazelnuts in food. Eur Food Res Technol 226:1155–1158CrossRefGoogle Scholar
  129. 129.
    D’Andrea M, Coission JD, Travaglia F, Garino C, Arlorlo M (2009) Development and validation of a SYBR-Green I real-time PCR protocol to detect hazelnut (Corylus avellana L.) in foods through calibration via plasmid reference standard. J Agric Food Chem 57:11201–11208PubMedCrossRefGoogle Scholar
  130. 130.
    Piknová L, Kuchta T (2007) Detection of cashew nuts in food by real-time polymerase chain reaction. J Food Nutr Res 46:101–104Google Scholar
  131. 131.
    Yano T, Sakai Y, Uchida K, Nakao Y, Ishihata K, Nakano S, Yamada T, Sakai S, Urisu A, Akiyama H, Maitani T (2007) Detection of walnut residues in processed foods by polymerase chain reaction. Biosci Biotechnol Biochem 71:1793–1796PubMedCrossRefGoogle Scholar
  132. 132.
    Wang H, Yuan F, Wu Y, Yang H, Xu B, Liu Z, Chen Y (2009) Detection of allergen walnut component in food by an improved real-time PCR method. J Food Prot 72:2433–2435PubMedCrossRefGoogle Scholar
  133. 133.
    Janská V, Piknová L, Kuchta T (2011) Relative quantification of walnuts and hazelnuts in bakery products using real-time polymerase chain reaction. Eur Food Res Technol 232:1057–1060CrossRefGoogle Scholar
  134. 134.
    Janská V, Piknová L, Kuchta T (2012) Semi-quantitative estimation of the walnut content in fillings of bakery products using real-time polymerase chain reaction with internal standard material. Eur Food Res Technol 235:1033–1038CrossRefGoogle Scholar
  135. 135.
    Barbieri G, Frigeri G (2006) Identification of hidden allergens: detection of pistachio traces in mortadella. Food Addit Contam 23:1260–1264PubMedCrossRefGoogle Scholar
  136. 136.
    Brežná B, Dudášová H, Kuchta T (2008) A novel real-time polymerase chain reaction method for the qualitative detection of pistachio in food. Eur Food Res Technol 228:197–203CrossRefGoogle Scholar
  137. 137.
    Röder M, Filbert H, Holzhauser T (2010) A novel, sensitive and specific real-time PCR for the detection of traces of allergenic Brazil nut (Bertholletia excelsa) in processed foods. Anal Bioanal Chem 398:2279–2288PubMedCrossRefGoogle Scholar
  138. 138.
    Brzezinski JL (2007) Detection of sesame seed DNA in foods using real-time PCR. J Food Prot 70:1033–1036PubMedCrossRefGoogle Scholar
  139. 139.
    Schöringhumer K, Cichna-Markl M (2007) Development of a real-time PCR method to detect potentially allergenic sesame (Sesamum indicum) in food. J Agric Food Chem 55:10540–10547PubMedCrossRefGoogle Scholar
  140. 140.
    Mustorp S, Engdahl-Axelsson C, Svensson U, Holck A (2008) Detection of celery (Apium graveolens), mustard (Sinapis alba, Brassica juncea, Brassica nigra) and sesame (Sesamum indicum) in food by real-time PCR. Eur Food Res Technol 226:771–778CrossRefGoogle Scholar
  141. 141.
    Meyer R, Chardonnens F, Hübner P, Lüthy J (1996) Polymerase chain reaction (PCR) in the quality and safety assurance of food: detection of soya in processed meat products. Z Für Lebensm Unters Forsch 203:339–344CrossRefGoogle Scholar
  142. 142.
    Torp AM, Olesen A, Sten E, Stahl Skov P, Bindslev-Jensen U, Poulsen LK et al (2006) Specific, semi-quantitative detection of the soybean allergen Gly m Bd 30 K DNA by PCR. Food Control 17:30–36CrossRefGoogle Scholar
  143. 143.
    Yamakawa H, Akiyama H, Endo Y, Miyatake K, Sakata K, Sakai S et al (2007) Specific detection of soybean residues in processed foods by the polymerase chain reaction. Biosci Biotechnol Biochem 71:269–272PubMedCrossRefGoogle Scholar
  144. 144.
    Gryson N, Messens K, Dewettinck K (2008) PCR detection of soy ingredients in bread. Eur Food Res Technol 227:345–351CrossRefGoogle Scholar
  145. 145.
    Soares S, Mafra I, Amaral JS, Oliveira MBPP (2010) A PCR assay to detect trace amounts of soybean in meat sausages. Int J Food Sci Technol 45:2581–2588CrossRefGoogle Scholar
  146. 146.
    Dovicovicova L, Olexova L, Pangallo D, Siekel P, Kuchta T (2004) Polymerase chain reaction (PCR) for the detection of celery (Apium graveolens) in food. Eur Food Res Technol 218:493–495CrossRefGoogle Scholar
  147. 147.
    Stephan O, Weisz N, Vieths S, Weiser T, Rabe B, Vatterott W (2004) Protein quantification, sandwich ELISA, and real-time PCR used to monitor industrial cleaning procedures for contamination with peanut and celery allergens. J AOAC Int 87:1448–1457PubMedGoogle Scholar
  148. 148.
    Palle-Reisch M, Wolny M, Cichna-Markl M, Hochegger R (2013) Development and validation of a real-time PCR method for the simultaneous detection of black mustard (Brassica nigra) and brown mustard (Brassica juncea) in food. Food Chem 138:348–355PubMedCrossRefGoogle Scholar
  149. 149.
    Köppel E, Stadler M, Lüthy J, Hübner P (1998) Detection of wheat contamination in oats by polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA). Z für Leb Forsch A 206:399–403CrossRefGoogle Scholar
  150. 150.
    Yamakawa H, Akiyama H, Endo Y, Miyatake K, Sakata K, Sakai S, Toyoda M, Urisu A (2007) Specific detection of wheat residues in processed foods by polymerase chain reaction. Biosci Biotechnol Biochem 71:2561–2564PubMedCrossRefGoogle Scholar
  151. 151.
    Sandberg M, Lundberg L, Ferm M, Malmheden Yman I (2003) Real time PCR for the detection and discrimination of cereal contamination in gluten free foods. Eur Food Res Technol 217:344–349CrossRefGoogle Scholar
  152. 152.
    Hernández M, Esteve T, Pla M (2005) Real-time polymerase chain reaction based assays for quantitative detection of barley, rice, sunflower, and wheat. J Agric Food Chem 53:7003–7009PubMedCrossRefGoogle Scholar
  153. 153.
    Dahinden I, von Büren M, Lüthy J (2001) A quantitative competitive PCR system to detect contamination of wheat, barley or rye in gluten-free food for coeliac patients. Eur Food Res Technol 212:228–233CrossRefGoogle Scholar
  154. 154.
    Aranishi F, Okimoto T (2004) PCR-based detection of allergenic mackerel ingredients in seafood. J Genet 83:193–195PubMedCrossRefGoogle Scholar
  155. 155.
    Choi KY, Hong KW (2007) Genomic DNA sequence of mackerel parvalbumin and a PCR test for rapid detection of allergenic mackerel ingredients in food. Food Sci Biotechnol 16:67–70Google Scholar
  156. 156.
    Brzezinski JL (2005) Detection of crustacean DNA and species identification using a PCR-restriction fragment length polymorphism method. J Food Prot 68:1866–1873PubMedCrossRefGoogle Scholar
  157. 157.
    Schöringhumer K, Redl G, Cichna-Markl M (2009) Development and validation of a duplex real-time PCR method to simultaneously detect potentially allergenic sesame and hazelnut in food. J Agric Food Chem 57:2126–2134PubMedCrossRefGoogle Scholar
  158. 158.
    Fuchs M, Cichna-Markl M, Hochegger R (2013) Development and validation of a duplex real-time PCR method for the simultaneous detection of celery and white mustard in food. Food Chem 141:229–235PubMedCrossRefGoogle Scholar
  159. 159.
    Hubalkova Z, Rencova E (2011) One-step multiplex PCR method for the determination of pecan and Brazil nut allergens in food products. J Sci Food Agric 91:2407–2411PubMedCrossRefGoogle Scholar
  160. 160.
    Coïsson JD, Cereti E, Garino C, D’Andrea M, Recupero M, Restani P et al (2010) Microchip capillary electrophoresis (Lab-on-chip®) improves detection of celery (Apium graveolens L.) and sesame (Sesamum indicum L.) in foods. Food Res Int 43:1237–1243CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Silvia de la Cruz
    • 1
  • Inés López-Calleja
    • 1
  • Rosario Martín
    • 1
  • Isabel González
    • 1
  • Marcos Alcocer
    • 2
  • Teresa García
    • 1
    Email author
  1. 1.Facultad de Veterinaria, Departamento de Nutrición, Bromatología y Tecnología de los AlimentosUniversidad Complutense de MadridMadridSpain
  2. 2.School of BiosciencesUniversity of NottinghamNottinghamUK

Personalised recommendations