Skip to main content

Fluorescent Probes for the Analysis of Labile Metals in Brain Cells

  • Protocol
  • First Online:
Book cover Metals in the Brain

Part of the book series: Neuromethods ((NM,volume 124))

Abstract

The complex biological roles of transition metals create a challenge for investigating how cells of the brain interact with each other in healthy functioning and disease states. When imaging metal ions in such cells, many factors of the cellular environment need to be considered, especially when using a wide range of imaging agents to enable reliable interpretation of images and results. In this chapter, we focus on the use of fluorescent sensors for metals in a neuronal cellular environment, beginning with a summary of available fluorophores currently in the market, as well as some suggestions toward finding more tailored sensors for specific questions. We then describe the features of fluorescent probes, and highlight the parameters most crucial to different types of biological investigations. Finally, we provide a detailed method to prepare, treat, and image cellular models that should be applicable to a diverse range of fluorescent sensors, with suggestions for methods to analyze results using image analysis software.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Götz ME, Künig G, Riederer P, Youdim MBH (1994) Oxidative stress: free radical production in neural degeneration. Pharmacol Ther 63:37–122

    Article  PubMed  Google Scholar 

  2. Bush AI (2000) Metals and neuroscience. Curr Opin Chem Biol 4:184–191

    Article  CAS  PubMed  Google Scholar 

  3. Kandel ER, Schwartz JH, Jessell TM, Siegelbaum SA, Hudspeth AJ (2013) Principles of neural science. McGraw Hill Professional, New York, NY

    Google Scholar 

  4. Clapham DE (2007) Calcium signaling. Cell 131:1047–1058

    Article  CAS  PubMed  Google Scholar 

  5. Hodgkin AL, Huxley AF (1952) Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J Physiol 116:449–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Earl C, Chantry A, Mohammad N, Glynn P (1988) Zinc ions stabilise the association of basic protein with brain myelin membranes. J Neurochem 51:718–724

    Article  CAS  PubMed  Google Scholar 

  7. Pan E, X-a Z, Huang Z, Krezel A, Zhao M, Tinberg Christine E, Lippard Stephen J, McNamara James O (2011) Vesicular zinc promotes presynaptic and inhibits postsynaptic long-term potentiation of mossy fiber-CA3 synapse. Neuron 71:1116–1126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rossi L, Lombardo MF, Ciriolo MR, Rotilio G (2004) Mitochondrial dysfunction in neurodegenerative diseases associated with copper imbalance. Neurochem Res 29:493–504

    Article  CAS  PubMed  Google Scholar 

  9. Akatsu H, Hori A, Yamamoto T, Yoshida M, Mimuro M, Hashizume Y, Tooyama I, Yezdimer EM (2011) Transition metal abnormalities in progressive dementias. Biometals 25:337–350

    Article  PubMed  Google Scholar 

  10. Hung LW, Villemagne VL, Cheng L, Sherratt NA, Ayton S, White AR, Crouch PJ, Lim S, Leong SL, Wilkins S, George J, Roberts BR, Pham CLL, Liu X, Chiu FCK, Shackleford DM, Powell AK, Masters CL, Bush AI, O’Keefe G, Culvenor JG, Cappai R, Cherny RA, Donnelly PS, Hill AF, Finkelstein DI, Barnham KJ (2012) The hypoxia imaging agent CuII(atsm) is neuroprotective and improves motor and cognitive functions in multiple animal models of Parkinson’s disease. J Exp Med 209:837–854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. New EJ (2013) Tools to study distinct metal pools in biology. Dalton Trans 42:3210–3219

    Article  CAS  PubMed  Google Scholar 

  12. Finney LA, O’Halloran TV (2003) Transition metal speciation in the cell: insights from the chemistry of metal ion receptors. Science 300:931–936

    Article  CAS  PubMed  Google Scholar 

  13. Rae TD, Schmidt PJ, Pufahl RA, Culotta VC, O’Halloran TV (1999) Undetectable intracellular free copper: the requirement of a copper chaperone for superoxide dismutase. Science 284:805–808

    Article  CAS  PubMed  Google Scholar 

  14. Ralle M, Lutsenko S (2009) Quantitative imaging of metals in tissues. Biometals 22:197–205

    Article  CAS  PubMed  Google Scholar 

  15. Becker JS, Salber D (2010) New mass spectrometric tools in brain research. Trends Analyt Chem 29:966–979

    Article  CAS  Google Scholar 

  16. Bourassa MW, Miller LM (2012) Metal imaging in neurodegenerative diseases. Metallomics 4:721–738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chang CJ, Lippard Stephen J (2006) Zinc metalloneurochemistry: physiology, pathology and probes. In: Sigel A, Sigel H, Sigel RKO (eds) Neurodegenerative diseases and metal ions: metal ions in life sciences. Springer, Berlin

    Google Scholar 

  18. Ward RJ, Crichton RR (2006) Iron and its role in neurodegenerative diseases. In: Sigel A, Sigel H, Sigel RKO (eds) Neurodegenerative diseases and metal ions: metal ions in life sciences. Springer, Berlin

    Google Scholar 

  19. Que EL, Domaille DW, Chang CJ (2008) Metals in neurobiology: probing their chemistry and biology with molecular imaging. Chem Rev 108:1517–1549

    Article  CAS  PubMed  Google Scholar 

  20. Shen C, New EJ (2015) What has fluorescent sensing told us about copper and brain malfunction? Metallomics 7:56–65

    Article  CAS  PubMed  Google Scholar 

  21. Aron AT, Ramos-Torres KM, Cotruvo JA, Chang CJ (2015) Recognition- and reactivity-based fluorescent probes for studying transition metal signaling in living systems. Acc Chem Res 48:2434–2442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lew VL, Tsien RY, Miner C, Bookchin RM (1982) Physiological [Ca2+]i level and pump-leak turnover in intact red cells measured using an incorporated Ca chelator. Nature 298:478–481

    Article  CAS  PubMed  Google Scholar 

  23. Walkup GK, Burdette SC, Lippard SJ, Tsien RY (2000) A new cell-permeable fluorescent probe for Zn2+. J Am Chem Soc 122:5644–5645

    Article  CAS  Google Scholar 

  24. Petrat F, Rauen U, de Groot H (1999) Determination of the chelatable iron pool of isolated rat hepatocytes by digital fluorescence microscopy using the fluorescent probe, phen green SK. Hepatology 29:1171–1179

    Article  CAS  PubMed  Google Scholar 

  25. Zeng L, Miller EW, Pralle A, Isacoff EY, Chang CJ (2006) A selective turn-on fluorescent sensor for imaging copper in living cells. J Am Chem Soc 128:10–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Demchenko AP, Duportail G, Oncul S, Klymchenko AS, Mély Y (2015) Introduction to fluorescence probing of biological membranes. In: Owen MD (ed) Methods in membrane lipids. Springer, New York, NY, pp 19–43

    Google Scholar 

  27. Lee MH, Kim JS, Sessler JL (2015) Small molecule-based ratiometric fluorescence probes for cations, anions, and biomolecules. Chem Soc Rev 44:4185–4191

    Article  CAS  PubMed  Google Scholar 

  28. Chan J, Dodani SC, Chang CJ (2012) Reaction-based small-molecule fluorescent probes for chemoselective bioimaging. Nat Chem 4:973–984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fujimoto T, Ohsaki Y, Cheng J, Suzuki M, Shinohara Y (2008) Lipid droplets: a classic organelle with new outfits. Histochem Cell Biol 130:263–279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Smith RAJ, Porteous CM, Gane AM, Murphy MP (2003) Delivery of bioactive molecules to mitochondria in vivo. Proc Natl Acad Sci 100:5407–5412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sakhrani NM, Padh H (2013) Organelle targeting: third level of drug targeting. Drug Des Devel Ther 7:585–599

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Dittrich PS, Schwille P (2014) Photobleaching and stabilization of. fluorophores used for single-molecule analysis. with one- and two-photon excitation. Appl Phys B 73:829–837

    Article  Google Scholar 

  33. Turski ML, Thiele DJ (2009) New roles for copper metabolism in cell proliferation, signaling, and disease. J Biol Chem 284:717–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang A-S, Enns CA (2009) Iron homeostasis: recently identified proteins provide insight into novel control mechanisms. J Biol Chem 284:711–715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Carter KP, Young AM, Palmer AE (2014) Fluorescent sensors for measuring metal ions in living systems. Chem Rev 114:4564–4601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Maret W (2015) Analyzing free zinc(ii) ion concentrations in cell biology with fluorescent chelating molecules. Metallomics 7:202–211

    Article  CAS  PubMed  Google Scholar 

  37. Estrada LC, Roberti MJ, Simoncelli S, Levi V, Aramendía PF, Martínez OE (2012) Detection of low quantum yield fluorophores and improved imaging times using metallic nanoparticles. J Phys Chem B 116:2306–2313

    Article  CAS  PubMed  Google Scholar 

  38. Hackett MJ, McQuillan JA, El-Assaad F, Aitken JB, Levina A, Cohen DD, Siegele R, Carter EA, Grau GE, Hunt NH, Lay PA (2011) Chemical alterations to murine brain tissue induced by formalin fixation: implications for biospectroscopic imaging and mapping studies of disease pathogenesis. Analyst 136:2941–2952

    Article  CAS  PubMed  Google Scholar 

  39. Hare DJ, George JL, Bray L, Volitakis I, Vais A, Ryan TM, Cherny RA, Bush AI, Masters CL, Adlard PA, Doble PA, Finkelstein DI (2014) The effect of paraformaldehyde fixation and sucrose cryoprotection on metal concentration in murine neurological tissue. J Anal At Spectrom 29:565–570

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth J. New .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Kolanowski, J.L., Shen, C., New, E.J. (2017). Fluorescent Probes for the Analysis of Labile Metals in Brain Cells. In: White, A. (eds) Metals in the Brain. Neuromethods, vol 124. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6918-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6918-0_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6916-6

  • Online ISBN: 978-1-4939-6918-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics