Advertisement

Bacterial Detection Using Peptide-Based Platform and Impedance Spectroscopy

  • Hashem Etayash
  • Thomas Thundat
  • Kamaljit Kaur
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1572)

Abstract

Antimicrobial peptides have the ability to function as bio-recognition elements in the detection of bacteria. For instance, we showed that Leucocin A, an antimicrobial peptide from class IIa bacteriocins, binds gram-positive Listeria monocytogenes with higher affinity than other gram-positive bacteria like S. aureus, L. innocua, and E. faecalis. The binding was detected using impedance spectroscopy when Leucocin A immobilized on impedance electrodes binds bacteria from a sample. Here we highlight the strength of utilizing Leucocin A as a bio-recognition probe in biosensor platforms and provide details on its application in real-time bacterial detection using electrochemical impedance spectroscopy. A simple new generation impedance array analyzer is utilized that works at very low frequencies to identify interactions between peptide and the target bacteria.

Key words

Peptide-based biosensors Antimicrobial peptide Leucocin A Impedance spectroscopy Bacterial detection Listeria monocytogenes 

Notes

Acknowledgments

We acknowledge the Natural Sciences and Engineering Research Council of Canada (NSERC) for supporting this research. We also thank CanBiocin Edmonton Inc. for providing all strains of bacteria. H. Etayash is the recipient of Alberta Innovates Technology Future Scholarship.

References

  1. 1.
    Etayash H, Jiang K, Thundat T, Kaur K (2014) Impedimetric detection of pathogenic gram-positive bacteria using an antimicrobial peptide from class iia bacteriocins. Anal Chem 86:1693–1700CrossRefGoogle Scholar
  2. 2.
    Lim SK, Chen P, Lee FL, Moochhala S, Liedberg B (2015) Peptide-assembled graphene oxide as a fluorescent turn-on sensor for lipopolysaccharide (endotoxin) detection. Anal Chem 87:9408–9412CrossRefGoogle Scholar
  3. 3.
    Dong Z-M, Zhao G-C (2015) Label-free detection of pathogenic bacteria via immobilized antimicrobial peptides. Talanta 137:55–61CrossRefGoogle Scholar
  4. 4.
    Choi H, Yang Z, Weisshaar JC (2015) Single-cell, real-time detection of oxidative stress induced in Escherichia coli by the antimicrobial peptide CM15. Proc Natl Acad Sci USA 112:E303–E310CrossRefGoogle Scholar
  5. 5.
    Yang M, Sun S, Kostov Y, Rasooly A (2011) An automated point-of-care system for immunodetection of staphylococcal enterotoxin B. Anal Biochem 416:74–81CrossRefGoogle Scholar
  6. 6.
    Etayash H, Jiang K, Azmi S, Thundat T, Kaur K (2015) Real-time detection of breast cancer cells using peptide-functionalized microcantilever arrays. Sci Rep 5:13967CrossRefGoogle Scholar
  7. 7.
    Azmi S, Jiang K, Stiles M, Thundat T, Kaur K (2015) Detection of Listeria monocytogenes with short peptide fragments from class IIa bacteriocins as recognition elements. ACS Comb Sci 17:156–163CrossRefGoogle Scholar
  8. 8.
    Zhang XY, Zhou LY, Luo HQ, Li NB (2013) A sensitive and label-free impedimetric biosensor based on an adjunct probe. Anal Chimi Acta 776:11–16CrossRefGoogle Scholar
  9. 9.
    Mostowfi F (2007) Electric breakdown of thin liquid films. Ph.D. thesis, University of Alberta, Edmonton, AB, CanadaGoogle Scholar
  10. 10.
    Kang T, Yoo SM, Yoon I, Lee SY, Kim B (2010) Patterned multiplex pathogen DNA detection by Au particle-on-wire SERS sensor. Nano Lett 10:1189–1193CrossRefGoogle Scholar
  11. 11.
    Andrade CAS, Nascimento JM, Oliveira IS, de Oliveira CVJ, de Melo CP, Franco OL, Oliveira MDL (2015) Nanostructured sensor based on carbon nanotubes and clavanin A for bacterial detection. Colloids Surf B Biointerfaces 135:833–839CrossRefGoogle Scholar
  12. 12.
    Nanduri V, Bhunia AK, Tu S-I, Paoli GC, Brewster JD (2007) SPR biosensor for the detection of L. monocytogenes using phage-displayed antibody. Biosen Bioelectron 23:248–252CrossRefGoogle Scholar
  13. 13.
    Ghindilis AL, Smith MW, Messing DS, Haynes VN, Middleton GB, Schwarzkopf KR, Campbell CE, Zhan C, Ulrich B, Frasier MJ et al (2012) Development of real-time assays for impedance-based detection of microbial double-stranded DNA targets: optimization and data analysis. Biosens Bioelectron 35:87–93CrossRefGoogle Scholar
  14. 14.
    Messing DS, Ghindilis A, Schwarzkopf K (2011) An improved algorithm for quantifying real-time impedance biosensor signals. Conf Proc IEEE Eng Med Biol Soc 2011:2740–2744Google Scholar
  15. 15.
    Mannoor MS, Zhang S, Link AJ, McAlpine MC (2010) Electrical detection of pathogenic bacteria vis immobilized antimicrobial peptides. Proc Natl Acad Sci USA 107:19207–19212CrossRefGoogle Scholar
  16. 16.
    Etayash H, Azmi S, Dangeti R, Kaur K (2015) Peptide bacteriocins—structure activity relationships. Curr Top Med Chem 16:220–241CrossRefGoogle Scholar
  17. 17.
    Jiang K, Etayash H, Azmi S, Naicker S, Hassanpourfard M, Shaibani PM, Thakur G, Kaur K, Thundat T (2015) Rapid label-free detection of E. coli using antimicrobial peptide assisted impedance spectroscopy. Anal Methods 7:9744–9748CrossRefGoogle Scholar
  18. 18.
    Bodapati KC, Soudy R, Etayash H, Stiles M, Kaur K (2013) Design, synthesis and evaluation of antimicrobial activity of N-terminal modified Leucocin A analogues. Bioorg Med Chem 21:3715–3722CrossRefGoogle Scholar
  19. 19.
    Etayash H, Norman L, Thundat T, Stiles M, Kaur K (2014) Surface-conjugated antimicrobial peptide leucocin A displays high binding to pathogenic gram-positive bacteria. ACS Appl Mater Interfaces 6:1131–1138CrossRefGoogle Scholar
  20. 20.
    Etayash H, Norman L, Thundat T, Kaur K (2013) Peptide-bacteria interactions using engineered surface-immobilized peptides from class IIa bacteriocins. Langmuir 29:4048–4056CrossRefGoogle Scholar
  21. 21.
    Wang J, Xie X, Feng J, Chen JC, Du X-j, Luo J, Lu X, Wang S (2015) Rapid detection of Listeria monocytogenes in milk using confocal micro-Raman spectroscopy and chemometric analysis. Int J Food Microbiol 204:66–74CrossRefGoogle Scholar
  22. 22.
    Shi L, Wu F, Wen Y, Zhao F, Xiang J, Ma L (2015) A novel method to detect Listeria monocytogenes via superparamagnetic lateral flow immunoassay. Anal Bioanal Chem 407:529–535CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Hashem Etayash
    • 1
    • 2
  • Thomas Thundat
    • 2
  • Kamaljit Kaur
    • 1
    • 3
  1. 1.Faculty of Pharmacy and Pharmaceutical SciencesUniversity of AlbertaEdmontonCanada
  2. 2.Department of Chemical and Materials EngineeringUniversity of AlbertaEdmontonCanada
  3. 3.Chapman University School of Pharmacy (CUSP)Chapman UniversityIrvineUSA

Personalised recommendations