Advertisement

Affinity Electrophoresis for Analysis of Catalytic Module-Carbohydrate Interactions

  • Darrell Cockburn
  • Casper Wilkens
  • Birte Svensson
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1588)

Abstract

Affinity electrophoresis has long been used to study the interaction between proteins and large soluble ligands. The technique has been found to have great utility for the examination of polysaccharide binding by proteins, particularly carbohydrate binding modules (CBMs). In recent years, carbohydrate surface binding sites of proteins mostly enzymes have also been investigated by this method. Here, we describe a protocol for identifying binding interactions between enzyme catalytic modules and a variety of carbohydrate ligands.

Key words

Affinity electrophoresis Polyacrylamide gel electrophoresis Polysaccharide Surface binding site Carbohydrate binding module Dissociation constant 

Notes

Acknowledgments

This work was supported by a grant to B.S. from the Danish Council for Independent Research|Natural Sciences.

References

  1. 1.
    Fried M, Crothers DM (1981) Equilibria and kinetics of lac repressor-operator interactions by polyacrylamide gel electrophoresis. Nucleic Acids Res 9(23):6505–6525CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Garner MM, Revzin A (1981) A gel electrophoresis method for quantifying the binding of proteins to specific DNA regions: application to components of the Escherichia coli lactose operon regulatory system. Nucleic Acids Res 9(13):3047–3060CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Abbott DW, Boraston AB (2012) Quantitative approaches to the analysis of carbohydrate-binding module function. Methods Enzymol 510:211–231. doi: 10.1016/B978-0-12-415931-0.00011-2 CrossRefPubMedGoogle Scholar
  4. 4.
    Tomme P, Creagh AL, Kilburn DG, Haynes CA (1996) Interaction of polysaccharides with the N-terminal cellulose-binding domain of Cellulomonas fimi CenC. 1. Binding specificity and calorimetric analysis. Biochemistry 35:13885–13894. doi: 10.1021/bi961185i CrossRefPubMedGoogle Scholar
  5. 5.
    Tomme P, Boraston A, Kormos J, Warren R, Kilburn D (2000) Affinity electrophoresis for the identification and characterization of soluble sugar binding by carbohydrate-binding modules. Enzyme Microb Technol 27:453–458CrossRefPubMedGoogle Scholar
  6. 6.
    Moraïs S, Lamed R, Bayer E (2012) Affinity electrophoresis as a method for determining substrate-binding specificity of carbohydrate-active enzymes for soluble polysaccharides. Methods Enzymol 908:119–127. doi: 10.1007/978-1-61779-956-3 Google Scholar
  7. 7.
    Cockburn D, Nielsen MM, Christiansen C, Andersen JM, Rannes JB, Blennow A, Svensson B (2015) Surface binding sites in amylase have distinct roles in recognition of starch structure motifs and degradation. Int J Biol Macromol 75:338–345. doi: 10.1016/j.ijbiomac.2015.01.054 CrossRefPubMedGoogle Scholar
  8. 8.
    Ludwiczek ML, Heller M, Kantner T, McIntosh LP (2007) A secondary xylan-binding site enhances the catalytic activity of a single-domain family 11 glycoside hydrolase. J Mol Biol 373:337–354. doi: 10.1016/j.jmb.2007.07.057 CrossRefPubMedGoogle Scholar
  9. 9.
    Blennow A, Viksø-Nielsen A, Morell MK (1998) α-glucan binding of potato-tuber starch-branching enzyme I as determined by tryptophan fluorescence quenching, affinity electrophoresis and steady-state kinetics. Eur J Biochem 252:331–338CrossRefPubMedGoogle Scholar
  10. 10.
    Wilkens C, Andersen S, Petersen BO, Li A, Busse-Wicher M, Birch J, Cockburn D, Nakai H, Christensen HE, Kragelund BB, Dupree P, McCleary B, Hindsgaul O, Hachem MA, Svensson B (2016) An efficient arabinoxylan-debranching α-L-arabinofuranosidase of family GH62 from Aspergillus nidulans contains a secondary carbohydrate binding site. Appl Microbiol Biotechnol 100(14):6265–6277. doi: 10.1007/s00253-016-7417-8 CrossRefPubMedGoogle Scholar
  11. 11.
    Wilkens C, Auger KD, Anderson NT, Meekins DA, Raththagala M, Abou Hachem M, Payne CM, Gentry MS, Svensson B (2016) Plant α-glucan phosphatases SEX4 and LSF2 display different affinity for amylopectin and amylose. FEBS Lett 590(1):118–128. doi: 10.1002/1873-3468.12027 CrossRefPubMedGoogle Scholar
  12. 12.
    Takeo K, Nakamura S (1972) Dissociation constants of glucan phosphorylases of rabbit tissues studied by polyacrylamide gel disc electrophoresis. Arch Biochem Biophys 153(1):1–7CrossRefPubMedGoogle Scholar
  13. 13.
    McLellan T (1982) Electrophoresis buffers for polyacrylamide gels at various pH. Anal Biochem 126(1):94–99. doi: 10.1016/0003-2697(82)90113-0 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Darrell Cockburn
    • 1
  • Casper Wilkens
    • 2
  • Birte Svensson
    • 3
  1. 1.Department of Microbiology and ImmunologyUniversity of MichiganAnn ArborUSA
  2. 2.Department of Chemical and Biochemical EngineeringTechnical University of DenmarkKongens LyngbyDenmark
  3. 3.Enzyme and Protein Chemistry, Department of Systems BiologyTechnical University of DenmarkKongens LyngbyDenmark

Personalised recommendations