Advertisement

Carbohydrate Depolymerization by Intricate Cellulosomal Systems

  • Johanna Stern
  • Lior Artzi
  • Sarah Moraïs
  • Carlos M. G. A. Fontes
  • Edward A. Bayer
Part of the Methods in Molecular Biology book series (MIMB, volume 1588)

Abstract

Cellulosomes are multi-enzymatic nanomachines that have been fine-tuned through evolution to efficiently deconstruct plant biomass. Integration of cellulosomal components occurs via highly ordered protein–protein interactions between the various enzyme-borne dockerin modules and the multiple copies of the cohesin modules located on the scaffoldin subunit. Recently, designer cellulosome technology has been established to provide insights into the architectural role of catalytic (enzymatic) and structural (scaffoldin) cellulosomal constituents for the efficient degradation of plant cell wall polysaccharides. Owing to advances in genomics and proteomics, highly structured cellulosome complexes have recently been unraveled, and the information gained has inspired the development of designer cellulosome technology to new levels of complex organization. These higher-order designer cellulosomes have in turn fostered our capacity to enhance the catalytic potential of artificial cellulolytic complexes. In this chapter, methods to produce and employ such intricate cellulosomal complexes are reported.

Key words

Cellulosome Cellulose Cellulase Xylanase Multi-enzymatic complex 

References

  1. 1.
    Himmel ME, Xu Q, Luo Y et al (2010) Microbial enzyme systems for biomass conversion: emerging paradigms. Biofuels 1:323–341. doi: 10.4155/bfs.09.25 CrossRefGoogle Scholar
  2. 2.
    Lamed R, Setter E, Bayer EA (1983) The cellulosome: a discrete cell surface organelle of clostridium thermocellum which exhibits separate antigenic, cellulose-binding and various cellulolytic activities. Biotechnol Bioeng Symp 13:163–181Google Scholar
  3. 3.
    Bayer EA, Belaich J-P, Shoham Y, Lamed R (2004) The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides. Annu Rev Microbiol 58:521–554. doi: 10.1146/annurev.micro.57.030502.091022 CrossRefPubMedGoogle Scholar
  4. 4.
    Bayer EA, Kenig R, Lamed R (1983) Adherence of Clostridium thermocellum to cellulose. J Bacteriol 156:818–827PubMedPubMedCentralGoogle Scholar
  5. 5.
    Dassa B, Borovok I, Lamed R et al (2012) Genome-wide analysis of Acetivibrio cellulolyticus provides a blueprint of an elaborate cellulosome system. BMC Genomics 13:210. doi: 10.1186/1471-2164-13-210 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Hamberg Y, Ruimy-Israeli V, Dassa B et al (2014) Elaborate cellulosome architecture of acetivibrio cellulolyticus revealed by selective screening of cohesin-dockerin interactions. Peer J 2:e636. doi: 10.7717/peerj.636 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Rincon MT, Dassa B, Flint HJ et al (2010) Abundance and diversity of dockerin-containing proteins in the fiber-degrading rumen bacterium, Ruminococcus flavefaciens FD-1. PLoS One 5:e12476. doi: 10.1371/journal.pone.0012476 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Izquierdo J a., Goodwin L, Davenport KW, et al (2012) Complete genome sequence of Clostridium clariflavum DSM 19732. Stand Genomic Sci 6:104–115. doi:  10.4056/sigs.2535732
  9. 9.
    Artzi L, Dassa B, Borovok I et al (2014) Cellulosomics of the cellulolytic thermophile Clostridium clariflavum. Biotechnol Biofuels 7:100. doi: 10.1186/1754-6834-7-100 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Artzi L, Morag E, Barak Y et al (2015) Clostridium clariflavum: key cellulosome players are revealed by proteomic analysis. MBio 6:1–12. doi: 10.1128/mBio.00411-15 CrossRefGoogle Scholar
  11. 11.
    Bayer EA, Morag E, Lamed R (1994) The cellulosome-a treasure-trove for biotechnology. Trends Biotechnol 12:379–386. doi: 10.1016/0167-7799(94)90039-6 CrossRefPubMedGoogle Scholar
  12. 12.
    Pagès S, Bélaïch A, Bélaïch JP et al (1997) Species-specificity of the cohesin-dockerin interaction between Clostridium thermocellum and Clostridium cellulolyticum: prediction of specificity determinants of the dockerin domain. Proteins 29:517–527CrossRefPubMedGoogle Scholar
  13. 13.
    Stern J, Moraïs S, Lamed R, Bayer EA (2016) Adaptor scaffoldins: an original strategy for extended designer cellulosomes, inspired from nature. MBio 7:e00083. doi: 10.1128/mBio.00083-16.
  14. 14.
    Haimovitz R, Barak Y, Morag E et al (2008) Cohesin-dockerin microarray: diverse specificities between two complementary families of interacting protein modules. Proteomics 8:968–979. doi: 10.1002/pmic.200700486 CrossRefPubMedGoogle Scholar
  15. 15.
    Barak Y, Handelsman T, Nakar D et al (2005) Matching fusion protein systems for affinity analysis of two interacting families of proteins: the cohesin-dockerin interaction. J Mol Recognit 18:491–501. doi: 10.1002/jmr.749 CrossRefPubMedGoogle Scholar
  16. 16.
    Shiratori H, Sasaya K, Ohiwa H et al (2009) Clostridium clariflavum sp. nov. and Clostridium caenicola sp. nov., moderately thermophilic, cellulose−/cellobiose-digesting bacteria isolated from methanogenic sludge. Int J Syst Evol Microbiol 59:1764–1770. doi: 10.1099/ijs.0.003483-0 CrossRefPubMedGoogle Scholar
  17. 17.
    Bayer EA, Shoham Y, Lamed R (2013) Lignocellulose-decomposing bacteria and their enzyme systems. In: Rosenberg E, DeLong EF, Lory S et al (eds) Prokaryotes-prokaryotic physiol biochem. pp 215–265. Springer: BerlinGoogle Scholar
  18. 18.
    Lamed R, Setter E, Bayer EA (1983) Characterization of a cellulose-binding, cellulase-containing complex in Clostridium thermocellum. J Bacteriol 156:828–836PubMedPubMedCentralGoogle Scholar
  19. 19.
    Bayer EA, Setter E, Lamed R (1985) Organization and distribution of the cellulosome in Clostridium thermocellum. J Bacteriol 163:552–559PubMedPubMedCentralGoogle Scholar
  20. 20.
    Bayer EA, Lamed R (1986) Ultrastructure of the cell surface cellulosome of Clostridium thermocellum and its interaction with cellulose. J Bacteriol 167:828–836CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Lamed R, Naimark J, Morgenstern E, Bayer EA (1987) Specialized cell surface structures in cellulolytic bacteria. J Bacteriol 169:3792–3800CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Xu Q, Resch MG, Podkaminer K et al (2016) Dramatic performance of Clostridium thermocellum explained by its wide range of cellulase modalities. Sci Adv 2:e1501254. doi: 10.1126/sciadv.1501254 PubMedPubMedCentralGoogle Scholar
  23. 23.
    Raman B, Pan C, Hurst GB et al (2009) Impact of pretreated Switchgrass and biomass carbohydrates on Clostridium thermocellum ATCC 27405 cellulosome composition: a quantitative proteomic analysis. PLoS One 4:e5271CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Morag E, Lapidot A, Govorko D et al (1995) Expression, purification and characterization of the cellulose-binding domain of the scaffoldin subunit from the cellulosome of Clostridium thermocellum. Appl Environ Microbiol 61:1980–1986PubMedPubMedCentralGoogle Scholar
  25. 25.
    Fendri I, Tardif C, Fierobe H-P et al (2009) The cellulosomes from Clostridium cellulolyticum: identification of new components and synergies between complexes. FEBS J 276:3076–3086. doi: 10.1111/j.1742-4658.2009.07025.x CrossRefPubMedGoogle Scholar
  26. 26.
    Han SO, Yukawa H, Inui M, Doi RH (2005) Effect of carbon source on the cellulosomal subpopulations of Clostridium cellulovorans. Microbiology 151:1491–1497. doi: 10.1099/mic.0.27605-0 CrossRefPubMedGoogle Scholar
  27. 27.
    Fierobe HP, Mechaly A, Tardif C et al (2001) Design and production of active cellulosome chimeras. Selective incorporation of dockerin-containing enzymes into defined functional complexes. J Biol Chem 276:21257–21261. doi: 10.1074/jbc.M102082200 CrossRefPubMedGoogle Scholar
  28. 28.
    Caspi J, Irwin D, Lamed R et al (2006) Thermobifida fusca family-6 cellulases as potential designer cellulosome components. Biocatal Biotransform 24:3–12CrossRefGoogle Scholar
  29. 29.
    Caspi J, Irwin D, Lamed R et al (2008) Conversion of Thermobifida fusca free exoglucanases into cellulosomal components: comparative impact on cellulose-degrading activity. J Biotechnol 135:351–357. doi: 10.1016/j.jbiotec.2008.05.003 CrossRefPubMedGoogle Scholar
  30. 30.
    Caspi J, Barak Y, Haimovitz R et al (2009) Effect of linker length and dockerin position on conversion of a Thermobifida fusca endoglucanase to the cellulosomal mode. Appl Environ Microbiol 75:7335–7342. doi: 10.1128/AEM.01241-09 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Caspi J, Barak Y, Haimovitz R et al (2010) Thermobifida fusca exoglucanase Cel6B is incompatible with the cellulosomal mode in contrast to endoglucanase Cel6A. Syst Synth Biol 4:193–201. doi: 10.1007/s11693-010-9056-1 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Fierobe HP, Mingardon F, Mechaly A et al (2005) Action of designer cellulosomes on homogeneous versus complex substrates: controlled incorporation of three distinct enzymes into a defined trifunctional scaffoldin. J Biol Chem 280:16325–16334. doi: 10.1074/jbc.M414449200 CrossRefPubMedGoogle Scholar
  33. 33.
    Moraïs S, Barak Y, Caspi J et al (2010) Cellulase-xylanase synergy in designer cellulosomes for enhanced degradation of a complex cellulosic substrate. MBio 1:3–10. doi: 10.1128/mBio.00285-10.CrossRefGoogle Scholar
  34. 34.
    Moraïs S, Morag E, Barak Y et al (2012) Deconstruction of lignocellulose into soluble sugars by native and designer cellulosomes. MBio. doi: 10.1128/mBio.00508-12 PubMedPubMedCentralGoogle Scholar
  35. 35.
    Mingardon F, Chanal A, Tardif C et al (2007) Exploration of new geometries in cellulosome-like chimeras. Appl Environ Microbiol 73:7138–7149. doi: 10.1128/AEM.01306-07 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Mingardon F, Chanal A, López-Contreras AM et al (2007) Incorporation of fungal cellulases in bacterial minicellulosomes yields viable, synergistically acting cellulolytic complexes. Appl Environ Microbiol 73:3822–3832. doi: 10.1128/AEM.00398-07 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Arfi Y, Shamshoum M, Rogachev I et al (2014) Integration of bacterial lytic polysaccharide monooxygenases into designer cellulosomes promotes enhanced cellulose degradation. Proc Natl Acad Sci U S A 111:9109–9114. doi: 10.1073/pnas.1404148111 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Eschbach S, Hofmann C, Maerz M, et al (1990) Molecular cloning. A laboratory manual. 2. Auflage. Hrsg. von J. Sambrook, E. F. Fritsch, T. Maniatis, Cold Spring Harbor Laboratory Press. ISBN 0-87969-309-6. Biol Unserer Zeit 20:285–285. doi:  10.1002/biuz.19900200607
  39. 39.
    Gasteiger E, Hoogland C, Gattiker A et al (2005) Protein identification and analysis tools on the ExPASy server. Proteomics Protoc Handb:571–607. doi: 10.1385/1-59259-890-0:571
  40. 40.
    Vazana Y, Moraïs S, Barak Y et al (2012) Designer cellulosomes for enhanced hydrolysis of cellulosic substrates. Methods Enzymol 510:429–452. doi: 10.1016/B978-0-12-415931-0.00023-9 CrossRefPubMedGoogle Scholar
  41. 41.
    Adams JJ, Webb BA, Spencer HL, Smith SP (2005) Structural characterization of type II dockerin module from the cellulosome of Clostridium thermocellum: Calcium-induced effects on conformation and target recognition. Biochemistry 44:2173–2182. doi:  10.1021/bi048039u

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Johanna Stern
    • 1
  • Lior Artzi
    • 1
  • Sarah Moraïs
    • 1
  • Carlos M. G. A. Fontes
    • 2
  • Edward A. Bayer
    • 1
  1. 1.Faculty of Biochemistry, Department of Biomolecular SciencesThe Weizmann Institute of ScienceRehovotIsrael
  2. 2.CIISA – Faculdade de Medicina VeterináriaUniversidade de LisboaLisbonPortugal

Personalised recommendations