Skip to main content

Colorimetric Detection of Acetyl Xylan Esterase Activities

  • Protocol
  • First Online:
Book cover Protein-Carbohydrate Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1588))

Abstract

Colorimetric detection of reaction products is typically preferred for initial surveys of acetyl xylan esterase (AcXE) activity. This chapter will describe common colorimetric methods, and variations thereof, for measuring AcXE activities on commercial, synthesized, and natural substrates. Whereas assays using pNP-acetate, α-naphthyl acetate, and 4-methylumbelliferyl acetate (4MUA) are emphasized, common methods used to measure AcXE activity towards carbohydrate analogs (e.g., acetylated p-nitrophenyl β-d-xylopyranosides) and various acetylated xylans are also described. Strengths and limitations of the colorimetric assays are highlighted.

The original version of this chapter was revised. The erratum to this chapter is available at: DOI 10.1007/978-1-4939-6899-2_23

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-1-4939-6899-2_23

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Biely P (2012) Microbial carbohydrate esterases deacetylating plant polysaccharides. Biotechnol Adv 30:1575–1588. doi:10.1016/j.biotechadv.2012.04.010

    Article  CAS  PubMed  Google Scholar 

  2. Alalouf O, Balazs Y, Volkinshtein M et al (2011) A new family of carbohydrate esterases is represented by a GDSL hydrolase/acetylxylan esterase from Geobacillus stearothermophilus. J Biol Chem 286:41993–42001. doi:10.1074/jbc.M111.301051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lombard V, Golaconda Ramulu H, Drula E et al (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42:D490–D495

    Article  CAS  PubMed  Google Scholar 

  4. Taylor EJ, Gloster TM, Turkenburg JP et al (2006) Structure and activity of two metal ion-dependent acetylxylan esterases involved in plant cell wall degradation reveals a close similarity to peptidoglycan deacetylases. J Biol Chem 281:10968–10975. doi:10.1074/jbc.M513066200

    Article  CAS  PubMed  Google Scholar 

  5. Biely P, Puls J, Schneider H (1985) Acetyl xylan esterases in fungal cellulolytic systems. FEBS Lett 186:80–84. doi:10.1016/0014-5793(85)81343-0

    Article  CAS  Google Scholar 

  6. Johnson KG, Fontana JD, MacKenzie CR (1988) Measurement of acetylxylan esterase in Streptomyces. Methods Enzymol 160:551–560. doi:10.1016/0076-6879(88)60168-6

    Article  CAS  Google Scholar 

  7. Shao W, Wiegel J (1995) Purification and characterization of two thermostable acetyl xylan esterases from Thermoanaerobacterium sp. strain JW/SL-YS485. Appl Environ Microbiol 61:729–733

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Christakopoulos P, Mamma D, Kekos D et al (1999) Enhanced acetyl esterase production by Fusarium oxysporum. World J Microbiol Biotechnol 15:443–446. doi:10.1023/A:1008936204368

    Article  CAS  Google Scholar 

  9. Biely P, Côté G, Kremnický L et al (1996) Substrate specificity of acetylxylan esterase from Schizophyllum commune: mode of action on acetylated carbohydrates. Biochim Biophys Acta 1298:209–222. doi:10.1016/S0167-4838(96)00132-X

    Article  CAS  PubMed  Google Scholar 

  10. Lee H, To RJ, Latta RK et al (1987) Some properties of extracellular acetylxylan esterase produced by the yeast Rhodotorula mucilaginosa. Appl Environ Microbiol 53:2831–2834

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Degrassi G, Okeke BC, Bruschi CV et al (1998) Purification and characterization of an acetyl xylan esterase from Bacillus pumilus. Appl Environ Microbiol 64:789–792

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Chung HJ, Park SM, Kim HR et al (2002) Cloning the gene encoding acetyl xylan esterase from Aspergillus ficuum and its expression in Pichia pastoris. Enzyme Microb Technol 31:384–391. doi:10.1016/S0141-0229(02)00122-9

    Article  CAS  Google Scholar 

  13. Halgasová N, Kutejová E, Timko J (1994) Purification and some characteristics of the acetylxylan esterase from Schizophyllum commune. Biochem J 298(Pt 3):751–755

    Article  PubMed  PubMed Central  Google Scholar 

  14. McDermid KP, Forsberg CW, Mackenzie CR (1990) Purification and properties of an acetylxylan esterase from Fibrobacter succinogenes S85. Appl Environ Microbiol 56:3805–3810. doi:10.1016/j.enzmictec.2007.09.007

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Merino-Trigo A, Sampedro L, Rodrguez-Berrocal FJ et al (1999) Activity and partial characterisation of xylanolytic enzymes in the earthworm Eisenia andrei fed on organic wastes. Soil Biol Biochem 31:1735–1740. doi:10.1016/S0038-0717(99)00092-9

    Article  CAS  Google Scholar 

  16. Bauer S, Vasu P, Persson S et al (2006) Development and application of a suite of polysaccharide-degrading enzymes for analyzing plant cell walls. Proc Natl Acad Sci USA 103:11417–11422. doi:10.1073/pnas.0604632103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chungool W, Thongkam W, Raweesri P et al (2008) Production, purification, and characterization of acetyl esterase from Streptomyces sp. PC22 and its action in cooperation with xylanolytic enzymes on xylan degradation. World J Microbiol Biotechnol 24:549–556. doi:10.1007/s11274-007-9509-1

    Article  CAS  Google Scholar 

  18. Hespell RB, O’Bryan-Shah PJ (1988) Esterase activities in Butyrivibrio fibrisolvens strains. Appl Environ Microbiol 54:1917–1922

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Blum DL, Li XL, Chen H, Ljungdahl LG (1999) Characterization of an acetyl xylan esterase from the anaerobic fungus Orpinomyces sp. strain PC-2. Appl Environ Microbiol 65:3990–3995

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Westlake K, Mackie RI, Dutton MF (1987) T-2 toxin metabolism by ruminal bacteria and its effect on their growth. Appl Environ Microbiol 53:587–592

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Navarro-Fernández J, Martínez-Martínez I, Montoro-García S et al (2008) Characterization of a new rhamnogalacturonan acetyl esterase from Bacillus halodurans C-125 with a new putative carbohydrate binding domain. J Bacteriol 190:1375–1382. doi:10.1128/JB.01104-07

    Article  PubMed  Google Scholar 

  22. Neumueller KG, Streekstra H, Gruppen H et al (2014) Trichoderma longibrachiatum acetyl xylan esterase 1 enhances hemicellulolytic preparations to degrade corn silage polysaccharides. Bioresour Technol 163:64–73. doi:10.1016/j.biortech.2014.04.001

    Article  CAS  Google Scholar 

  23. Juturu V, Aust C, Wu J (2013) Heterologous expression and biochemical characterization of acetyl xylan esterase from Coprinopsis cinerea. World J Microbiol Biotechnol 29:597–605. doi:10.1007/s11274-012-1215-y

    Article  CAS  PubMed  Google Scholar 

  24. Koseki T, Furuse S, Iwano K et al (1997) An Aspergillus awamori acetylesterase: purification of the enzyme, and cloning and sequencing of the gene. Biochem J 326:485–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Poutanen K, Sundberg M (1988) An acetyl esterase of Trichoderma reesei and its role in the hydrolysis of acetyl xylans. Appl Microbiol Biotechnol 28:419–424

    Article  CAS  Google Scholar 

  26. Poutanen K, Sundberg M, Korte H et al (1990) Deacetylation of xylans by acetyl esterases of Trichoderma reesei. Appl Microbiol Biotechnol 33:506–510

    Article  CAS  Google Scholar 

  27. He X (2003) A continuous spectrophotometric assay for the determination of diamondback moth esterase activity. Arch Insect Biochem Physiol 54:68–76. doi:10.1002/arch.10103

    Article  CAS  PubMed  Google Scholar 

  28. Garcia-Sastre A, Villar E, Manuguerra JC et al (1991) Activity of influenza C virus O-acetylesterase with O-acetyl-containing compounds. Biochem J 273(Pt2):435–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Biely P, Côté G, Kremnický L et al (1996) Substrate specificity and mode of action of acetylxylan esterase from Streptomyces lividans. FEBS Lett 396:257–260. doi:10.1016/0014-5793(96)01080-0

    Article  CAS  PubMed  Google Scholar 

  30. Biely P, Mastihubová M, Côté GL et al (2003) Mode of action of acetylxylan esterase from Streptomyces lividans: a study with deoxy and deoxy-fluoro analogues of acetylated methyl β-d-xylopyranoside. Biochim Biophys Acta 1622:82–88. doi:10.1016/S0304-4165(03)00130-2

    Article  CAS  PubMed  Google Scholar 

  31. Horton D, Lauterback JH (1969) Relative reactivities of hydroxyl groups in carbohydrate derivatives. Specific NMR spectral assignments of acetyl groups in methyl tetra-O-acetyl-alpha-D-glucopyranoside and related derivatives. J Org Chem 34:86–92. doi:10.1021/jo00838a021

    Article  CAS  Google Scholar 

  32. Mastihubová M, Biely P (2001) A common access to 2- and 3-substituted methyl β-D-xylopyranosides. Tetrahedron Lett 42:9065–9067. doi:10.1016/S0040-4039(01)01957-8

    Article  Google Scholar 

  33. Mastihubová M, Biely P (2004) Deoxy and deoxyfluoro analogues of acetylated methyl beta-D-xylopyranoside-substrates for acetylxylan esterases. Carbohydr Res 339:2101–2110. doi:10.1016/j.carres.2004.06.001

    Article  PubMed  Google Scholar 

  34. Mastihubová M, Biely P (2004) Lipase-catalysed preparation of acetates of 4-nitrophenyl β-D-xylopyranoside and their use in kinetic studies of acetyl migration. Carbohydr Res 339:1353–1360. doi:10.1016/j.carres.2004.02.016

    Article  PubMed  Google Scholar 

  35. Biely P, Mastihubová M, la Grange DC et al (2004) Enzyme-coupled assay of acetylxylan esterases on monoacetylated 4-nitrophenyl beta-D-xylopyranosides. Anal Biochem 332:109–115. doi:10.1016/j.ab.2004.04.022

    Article  CAS  PubMed  Google Scholar 

  36. Levisson M, Han GW, Deller MC et al (2012) Functional and structural characterization of a thermostable acetyl esterase from Thermotoga maritima. Proteins 80:1545–1559. doi:10.1002/prot.24041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Biely P, Cziszárová M, Agger JW et al (2014) Trichoderma reesei CE16 acetyl esterase and its role in enzymatic degradation of acetylated hemicellulose. Biochim Biophys Acta 1840:516–525. doi:10.1016/j.bbagen.2013.10.008

    Article  CAS  PubMed  Google Scholar 

  38. Biely P, Cziszárová M, Uhliariková I et al (2013) Mode of action of acetylxylan esterases on acetyl glucuronoxylan and acetylated oligosaccharides generated by a GH10 endoxylanase. Biochim Biophys Acta 1830:5075–5086. doi:10.1016/j.bbagen.2013.07.018

    Article  CAS  PubMed  Google Scholar 

  39. Rantanen H, Virkki L, Tuomainen P et al (2007) Preparation of arabinoxylobiose from rye xylan using family 10 Aspergillus aculeatus endo-1,4-β-d-xylanase. Carbohydr Polym 68:350–359. doi:10.1016/j.carbpol.2006.11.022

    Article  CAS  Google Scholar 

  40. Pastell H, Tuomainen P, Virkki L et al (2008) Step-wise enzymatic preparation and structural characterization of singly and doubly substituted arabinoxylo-oligosaccharides with non-reducing end terminal branches. Carbohydr Res 343:3049–3057. doi:10.1016/j.carres.2008.09.013

    Article  CAS  PubMed  Google Scholar 

  41. Dalrymple BP, Cybinski DH, Layton I et al (1997) Three Neocallimastix patriciarum esterases associated with the degradation of complex polysaccharides are members of a new family of hydrolases. Microbiology 143:2605–2614. doi:10.1099/00221287-143-8-2605

    Article  CAS  PubMed  Google Scholar 

  42. Pouvreau L, Jonathan MC, Kabel MA et al (2011) Characterization and mode of action of two acetyl xylan esterases from Chrysosporium lucknowense C1 active towards acetylated xylans. Enzyme Microb Technol 49:312–320. doi:10.1016/j.enzmictec.2011.05.010

    Article  CAS  PubMed  Google Scholar 

  43. Martínez-Martínez I, Montoro-García S, Lozada-Ramírez JD et al (2007) A colorimetric assay for the determination of acetyl xylan esterase or cephalosporin C acetyl esterase activities using 7-amino cephalosporanic acid, cephalosporin C, or acetylated xylan as substrate. Anal Biochem 369:210–217. doi:10.1016/j.ab.2007.06.030

    Article  PubMed  Google Scholar 

  44. Cybinski DH, Layton I, Lowry JB et al (1999) An acetylxylan esterase and a xylanase expressed from genes cloned from the ruminal fungus Neocallimastix patriciarum act synergistically to degrade acetylated xylans. Appl Microbiol Biotechnol 52:221–225

    Article  CAS  PubMed  Google Scholar 

  45. Chong SL, Virkki L, Maaheimo H et al (2014) O-Acetylation of glucuronoxylan in Arabidopsis thaliana wild type and its change in xylan biosynthesis mutants. Glycobiology 24:494–506. doi:10.1093/glycob/cwu017

    Article  CAS  PubMed  Google Scholar 

  46. Uhliariková I, Vršanská M, McCleary BV et al (2013) Positional specifity of acetylxylan esterases on natural polysaccharide: an NMR study. Biochim Biophys Acta 1830:3365–3372. doi:10.1016/j.bbagen.2013.01.011

    Article  PubMed  Google Scholar 

  47. Neumüller KG, de Souza AC, van Rijn JH et al (2015) Positional preferences of acetyl esterases from different CE families towards acetylated 4-O-methyl glucuronic acid-substituted xylo-oligosaccharides. Biotechnol Biofuels 8:1–11. doi:10.1186/s13068-014-0187-6

    Article  Google Scholar 

  48. Neumüller KG, de Souza AC, Van Rijn J et al (2013) Fast and robust method to determine phenoyl and acetyl esters of polysaccharides by quantitative 1H NMR. J Agric Food Chem 61:6282–6287. doi:10.1021/jf401393c

    Article  PubMed  Google Scholar 

  49. Biely P, Mastihubová M, Tenkanen M et al (2011) Action of xylan deacetylating enzymes on monoacetyl derivatives of 4-nitrophenyl glycosides of β-D-xylopyranose and α-L-arabinofuranose. J Biotechnol 151:137–142. doi:10.1016/j.jbiotec.2010.10.074

    Article  CAS  PubMed  Google Scholar 

  50. Biely P, Hirsch J, la Grange DC et al (2000) A chromogenic substrate for a beta-xylosidase-coupled assay of alpha-glucuronidase. Anal Biochem 286:289–294. doi:10.1006/abio.2000.4810

    Article  CAS  PubMed  Google Scholar 

  51. Topakas E, Kyriakopoulos S, Biely P et al (2010) Carbohydrate esterases of family 2 are 6-O-deacetylases. FEBS Lett 584:543–548. doi:10.1016/j.febslet.2009.11.095

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant to G.M. from Ella and Georg Ehrnrooth foundation, Finland and an ERC Consolidator Grant to E.M. (BHIVE—648925). We thank Professor M. Tenkanen for her critical review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emma R. Master .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Mai-Gisondi, G., Master, E.R. (2017). Colorimetric Detection of Acetyl Xylan Esterase Activities. In: Abbott, D., Lammerts van Bueren, A. (eds) Protein-Carbohydrate Interactions. Methods in Molecular Biology, vol 1588. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6899-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6899-2_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6898-5

  • Online ISBN: 978-1-4939-6899-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics