An Improved Kinetic Assay for the Characterization of Metal-Dependent Pectate Lyases

  • Darryl R. Jones
  • Richard McLean
  • D. Wade Abbott
Part of the Methods in Molecular Biology book series (MIMB, volume 1588)


Pectate lyases are a subset of polysaccharide lyases (PLs) that specifically utilize a metal dependent β-elimination mechanism to cleave glyosidic bonds in homogalacturonan (HG; α-d-1,4-galacturonic acid). Most commonly, PLs harness calcium for catalysis; however, some PL families (e.g., PL2 and PL22) display preferences for transitional metals. Deploying alternative metals during β-elimination is correlated with signature coordination pocket chemistry, and is reflective of the evolution, functional specialization, and cellular location of PL activity. Here we describe an optimized method for the analysis of metal-dependent polysaccharide lyases (PLs). We use an endolytic PL2 from Yersinia enterocolitica (YePL2A) as example to demonstrate how altering the catalytic metal within the reaction can modulate PL kinetics.

Key words

Enzyme assay Kinetics Polysaccharide lyase (PL) Pectin Pectate Metal-dependent Uronic acid 


  1. 1.
    Lombard V, Bernard T, Rancurel C et al (2010) A hierarchical classification of polysaccharide lyases for glycogenomics. Biochem J 432:437–444. doi: 10.1042/BJ20101185 CrossRefPubMedGoogle Scholar
  2. 2.
    Ridley BL, O’Neill MA, Mohnen D (2001) Pectins: structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry 57:929–967. doi: 10.1016/S0031-9422(01)00113-3 CrossRefPubMedGoogle Scholar
  3. 3.
    Atmodjo MA, Hao Z, Mohnen D (2013) Evolving views of pectin biosynthesis. Annu Rev Plant Biol 64:747–779. doi: 10.1146/annurev-arplant-042811-105534 CrossRefPubMedGoogle Scholar
  4. 4.
    Garron ML, Cygler M (2010) Structural and mechanistic classification of uronic acid-containing polysaccharide lyases. Glycobiology 20:1547–1573. doi: 10.1093/glycob/cwq122 CrossRefPubMedGoogle Scholar
  5. 5.
    Garron ML, Cygler M (2014) Uronic polysaccharide degrading enzymes. Curr Opin Struct Biol 28:87–95. doi: 10.1016/ CrossRefPubMedGoogle Scholar
  6. 6.
    Charnock SJ, Brown IE, Turkenburg JP et al (2002) Convergent evolution sheds light on the anti-β-elimination mechanism common to family 1 and 10 polysaccharide lyases. Proc Natl Acad Sci U S A 99:12067–12072. doi: 10.1073/pnas.182431199 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Abbott DW, Boraston AB (2007) A family 2 pectate lyase displays a rare fold and transition metal-assisted B-elimination. J Biol Chem 282:35328–35336. doi: 10.1074/jbc.M705511200 CrossRefPubMedGoogle Scholar
  8. 8.
    Yip VLY, Withers SG (2006) Breakdown of oligosaccharides by the process of elimination. Curr Opin Chem Biol 10:147–155. doi:10.1016/j.cbpa. 2006.02.005CrossRefPubMedGoogle Scholar
  9. 9.
    Gacesa P (1987) Alginate-modifying enzymes. FEBS Lett 212:199–202. doi: 10.1016/0014-5793(87)81344-3 CrossRefGoogle Scholar
  10. 10.
    Abbott DW, Gilbert HJ, Boraston AB (2010) The active site of oligogalacturonate lyase provides unique insights into cytoplasmic oligogalacturonate β-elimination. J Biol Chem 285:39029–39038. doi: 10.1074/jbc.M110.153981 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Hepler PK, Winship LJ (2010) Calcium at the cell wall-cytoplast interface. J Integr Plant Biol 52:147–160. doi:10.1111/j.1744-7909. 2010.00923.xCrossRefPubMedGoogle Scholar
  12. 12.
    Shevchik VE, Condemine G, Robert-Baudouy J, Hugouvieux-Cotte-Pattat N (1999) The exopolygalacturonate lyase PelW and the oligogalacturonate lyase Ogl, two cytoplasmic enzymes of pectin catabolism in Erwinia chrysanthemi 3937. J Bacteriol 181:3912–3919PubMedPubMedCentralGoogle Scholar
  13. 13.
    Abbott DW, Thomas D, Pluvinage B, Boraston AB (2013) An ancestral member of the polysaccharide lyase family 2 displays endolytic activity and magnesium dependence. Appl Biochem Biotechnol 171:1911–1923. doi: 10.1007/s12010-013-0483-9 CrossRefPubMedGoogle Scholar
  14. 14.
    McLean R, Hobbs JK, Suits MD et al (2015) Functional analyses of resurrected and contemporary enzymes illuminate an evolutionary path for the emergence of exolysis in polysaccharide lyase family 2. J Biol Chem 290:21231–21243. doi: 10.1074/jbc.M115.664847 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Harding MM (2001) Geometry of metal - ligand interactions in proteins. Acta Crystallogr Sect D Biol Crystallogr 57:401–411. doi: 10.1107/S0907444999007374 CrossRefGoogle Scholar
  16. 16.
    Gasteiger E, Hoogland C, Gattiker A, et al (2005) Protein identification and analysis tools on the ExPASy Server. Proteomics protocols handbook. pp 571–607. doi: 10.1385/1592598900

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Darryl R. Jones
    • 1
  • Richard McLean
    • 1
    • 2
  • D. Wade Abbott
    • 1
    • 2
  1. 1.Functional Genomics of Complex Carbohydrate Utilization, Lethbridge Research and Development CentreAgriculture and Agri-Food CanadaLethbridgeCanada
  2. 2.Department of Chemistry and BiochemistryUniversity of LethbridgeLethbridgeCanada

Personalised recommendations