Identification of Genes Involved in the Degradation of Lignocellulose Using Comparative Transcriptomics

  • Robert J. Gruninger
  • Ian Reid
  • Robert J. Forster
  • Adrian Tsang
  • Tim A. McAllister
Part of the Methods in Molecular Biology book series (MIMB, volume 1588)


Lignocellulosic biomass represents an abundant, renewable resource that can be used to produce biofuels, low-cost livestock feed, and high-value chemicals. The potential of this resource has led to intensive research efforts to develop cost effective methods to breakdown lignocellulose. The efficiency with which the anaerobic fungi (phylum Neocallimastigomycota) degrade plant biomass is well recognized and in recent years has received renewed interest. Transcriptomics has been used to identify enzymes that are expressed by these fungi and are involved in the degradation of a range of lignocellulose feedstocks. The transcriptome is the entire complement of coding and noncoding RNA transcripts that are expressed by a cell under a particular set of conditions. Monitoring changes in gene expression can provide fundamental information about the biology of an organism. Here we outline a general methodology that will enable researchers to conduct comparative transcriptomic studies with the goal of identifying enzymes involved in the degradation of the plant cell wall. The method described here includes growth of fungal cultures, isolation and sequencing of RNA, and a basic description of data analysis for bioinformatic identification of differentially expressed transcripts.

Key words

Transcriptomics RNA-Seq Carbohydrate active enzyme Fungi Neocallimastigomycota 


  1. 1.
    Tsang A, Butler G, Powlowski J, Panisko EA, Baker SE (2009) Analytical and computational approaches to define the Aspergillus niger secretome. Fungal Genet Biol 46:S153–S160CrossRefPubMedGoogle Scholar
  2. 2.
    Kolbusz MA, Di Falco M, Ishmael N, Marqueteau S, Moisan MC, da Silva BC, Powlowski J, Tsang A (2014) Transcriptome and exoproteome analysis of utilization of plant-derived biomass by Myceliophthora thermophila. Fungal Genet Biol 72:10–20CrossRefPubMedGoogle Scholar
  3. 3.
    Gruninger RJ, Puniya AK, Callaghan TM, Edwards JE, Youssef N, Dagar SS, Fliegerova K, Griffith GW, Forster R, Tsang A, McAllister T, Elshahed MS (2014) Anaerobic fungi (phylum Neocallimastigomycota): advances in understanding their taxonomy, life cycle, ecology, role and biotechnological potential. FEMS Microbiol Ecol 90(1):1–17CrossRefPubMedGoogle Scholar
  4. 4.
    Couger MB, Youssef NH, Struchtemeyer CG, Liggenstoffer AS, Elshahed MS (2015) Transcriptomic analysis of lignocellulosic biomass degradation by the anaerobic fungal isolate Orpinomyces sp. strain C1A. Biotechnol Biofuels 8:208CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Solomon KV, Haitjema CH, Henske JK, Gilmore SP, Borges-Rivera D, Lipzen A, Brewer HM, Purvine SO, Wright AT, Theodorou MK, Grigoriev IV, Regev A, Thompson DA, O’Malley MA (2016) Early-branching gut fungi possess a large, comprehensive array of biomass-degrading enzymes. Science 351(6278):1192–1195CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Pollegioni L, Tonin F, Rosini E (2015) Lignin-degrading enzymes. FEBS J 282(7):1190–1213CrossRefPubMedGoogle Scholar
  7. 7.
    Song L, Florea L (2015) Rcorrector: efficient and accurate error correction for Illumina RNA-seq reads. GigaScience 4:48CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Jiang H, Lei R, Ding SW, Zhu S (2014) Skewer: a fast and accurate adapter trimer for next-generation sequencing paired-end reads. BMC Bioinformatics 15:182CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Kopylova E, Noe L, Touzet H (2012) SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics 28:3211–3217CrossRefPubMedGoogle Scholar
  10. 10.
    Crusoe MR, Alameldin HF, Awad S et al (2015) The khmer software package: enabling efficient nucleotide sequence analysis. F1000 Research 4:900PubMedPubMedCentralGoogle Scholar
  11. 11.
    Li D, Liu CM, Luo R, Sadakane K, Lam TW (2015) MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31:1674–1676CrossRefPubMedGoogle Scholar
  12. 12.
    Smith-Unna RD, Boursnell C, Patro R, Hibberd JM, Kelly S (2015) TransRate: reference free quality assessment of de-novo transcriptome assemblies bioRxiv 021626Google Scholar
  13. 13.
    Simao FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM (2015) BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31:3210–3212CrossRefPubMedGoogle Scholar
  14. 14.
    Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Wolfe R (2011) Techniques for cultivating methanogens. Methods Enzymol 494:1–22CrossRefPubMedGoogle Scholar
  16. 16.

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Robert J. Gruninger
    • 1
  • Ian Reid
    • 2
  • Robert J. Forster
    • 1
  • Adrian Tsang
    • 2
  • Tim A. McAllister
    • 1
  1. 1.Lethbridge Research and Development CentreAgriculture and Agri-Food CanadaLethbridgeCanada
  2. 2.Centre for Structural and Functional GenomicsConcordia UniversityQCCanada

Personalised recommendations