Probing the Complex Architecture of Multimodular Carbohydrate-Active Enzymes Using a Combination of Small Angle X-Ray Scattering and X-Ray Crystallography

  • Mirjam Czjzek
  • Elizabeth Ficko-Blean
Part of the Methods in Molecular Biology book series (MIMB, volume 1588)


The various modules in multimodular carbohydrate-active enzymes (CAZymes) may function in catalysis, carbohydrate binding, protein-protein interactions or as linkers. Here, we describe how combining the biophysical techniques of Small Angle X-ray Scattering (SAXS) and macromolecular X-ray crystallography (XRC) provides a powerful tool for examination into questions related to overall structural organization of ultra multimodular CAZymes.

Key words

Small-angle X-ray scattering SAXS X-ray Crystallography Carbohydrate-active enzymes CAZymes Carbohydrate binding module CBM Glycoside hydrolase Cohesin Dockerin Multimodular Structure Dissect and build 


  1. 1.
    Lammerts van Bueren AL et al (2011) The conformation and function of a multimodular glycogen-degrading pneumococcal virulence factor. Structure 19(5):640–651CrossRefPubMedGoogle Scholar
  2. 2.
    Moustafa I et al (2004) Sialic acid recognition by Vibrio cholerae neuraminidase. J Biol Chem 279(39):40819–40826CrossRefPubMedGoogle Scholar
  3. 3.
    Malecki PH, Vorgias CE, Petoukhov MV, Svergun DI, Rypniewski W (2014) Crystal structures of substrate-bound chitinase from the psychrophilic bacterium Moritella marina and its structure in solution. Acta Crystallogr D Biol Crystallogr 70(Pt 3):676–684CrossRefPubMedGoogle Scholar
  4. 4.
    Trastoy B et al (2014) Crystal structure of Streptococcus pyogenes EndoS, an immunomodulatory endoglycosidase specific for human IgG antibodies. Proc Natl Acad Sci U S A 111(18):6714–6719CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Turkenburg JP et al (2009) Structure of a pullulanase from Bacillus acidopullulyticus. Proteins 76(2):516–519CrossRefPubMedGoogle Scholar
  6. 6.
    Koropatkin NM, Smith TJ (2010) SusG: a unique cell-membrane-associated alpha-amylase from a prominent human gut symbiont targets complex starch molecules. Structure 18(2):200–215CrossRefPubMedGoogle Scholar
  7. 7.
    Mikami B et al (2006) Crystal structure of pullulanase: evidence for parallel binding of oligosaccharides in the active site. J Mol Biol 359(3):690–707CrossRefPubMedGoogle Scholar
  8. 8.
    da Silva VM et al (2014) Modular hyperthermostable bacterial endo-beta-1,4-mannanase: molecular shape, flexibility and temperature-dependent conformational changes. PLoS One 9(3):e92996CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Suits MD et al (2014) Conformational analysis of the Streptococcus pneumoniae hyaluronate lyase and characterization of its hyaluronan-specific carbohydrate-binding module. J Biol Chem 289(39):27264–27277CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Higgins MA, Ficko-Blean E, Meloncelli PJ, Lowary TL, Boraston AB (2011) The overall architecture and receptor binding of pneumococcal carbohydrate-antigen-hydrolyzing enzymes. J Mol Biol 411(5):1017–1036CrossRefPubMedGoogle Scholar
  11. 11.
    Albesa-Jove D et al (2010) Four distinct structural domains in Clostridium difficile toxin B visualized using SAXS. J Mol Biol 396(5):1260–1270CrossRefPubMedGoogle Scholar
  12. 12.
    Smith SP, Bayer EA (2013) Insights into cellulosome assembly and dynamics: from dissection to reconstruction of the supramolecular enzyme complex. Curr Opin Struct Biol 23(5):686–694CrossRefPubMedGoogle Scholar
  13. 13.
    Czjzek M, Fierobe HP, Receveur-Brechot V (2012) Small-angle X-ray scattering and crystallography: a winning combination for exploring the multimodular organization of cellulolytic macromolecular complexes. Methods Enzymol 510:183–210CrossRefPubMedGoogle Scholar
  14. 14.
    Ficko-Blean E et al (2009) Portrait of an enzyme, a complete structural analysis of a multimodular beta-N-acetylglucosaminidase from Clostridium perfringens. J Biol Chem 284(15):9876–9884CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Canard B, Garnier T, Saint-Joanis B, Cole ST (1994) Molecular genetic analysis of the nagH gene encoding a hyaluronidase of Clostridium perfringens. Mol Gen Genet 243(2):215–224PubMedGoogle Scholar
  16. 16.
    Ficko-Blean E, Boraston AB (2005) Cloning, recombinant production, crystallization and preliminary X-ray diffraction studies of a family 84 glycoside hydrolase from Clostridium perfringens. Acta Crystallogr Sect F 61:834–836CrossRefGoogle Scholar
  17. 17.
    Ficko-Blean E, Boraston AB (2006) The interaction of a carbohydrate-binding module from a Clostridium perfringens N-acetyl-beta-hexosaminidase with its carbohydrate receptor. J Biol Chem 281(49):37748–37757CrossRefPubMedGoogle Scholar
  18. 18.
    Adams JJ, Gregg K, Bayer EA, Boraston AB, Smith SP (2008) Structural basis of Clostridium perfringens toxin complex formation. Proc Natl Acad Sci U S A 105(34):12194–12199CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Petoukhov MV et al (2012) New developments in the ATSAS program package for small-angle scattering data analysis. J Appl Cryst 45:342–350CrossRefGoogle Scholar
  20. 20.
    Konarev PV, Petoukhov MV, Volkov VV, Svergun DI (2006) ATSAS 2.1, a program package for small-angle scattering data analysis. J Appl Cryst 39:277–286CrossRefGoogle Scholar
  21. 21.
    Mach H, Middaugh CR, Lewis RV (1992) Statistical determination of the average values of the extinction coefficients of tryptophan and tyrosine in native proteins. Anal Biochem 200(1):74–80CrossRefPubMedGoogle Scholar
  22. 22.
    Konarev PV, Volkov VV, Sokolova AV, Koch MHJ, Svergun DI (2003) PRIMUS: a Windows PC-based system for small-angle scattering data analysis. J Appl Cryst 36(5):1277–1282CrossRefGoogle Scholar
  23. 23.
    Putnam CD, Hammel M, Hura GL, Tainer JA (2007) X-ray solution scattering (SAXS) combined with crystallography and computation: defining accurate macromolecular structures, conformations and assemblies in solution. Q Rev Biophys 40(3):191–285CrossRefPubMedGoogle Scholar
  24. 24.
    Hjelm RP (1985) The small-angle approximation of X-Ray and neutron scatter from rigid rods of non-uniform cross-section and finite length. J Appl Cryst 18(Dec):452–460CrossRefGoogle Scholar
  25. 25.
    Jacques DA, Trewhella J (2010) Small-angle scattering for structural biology--expanding the frontier while avoiding the pitfalls. Protein Sci 19(4):642–657CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Svergun DI (1992) Determination of the regularization parameter in indirect-transform methods using perceptual criteria. J Appl Cryst 25:495–503CrossRefGoogle Scholar
  27. 27.
    Fischer H, Neto MD, Napolitano HB, Polikarpov I, Craievich AF (2010) Determination of the molecular weight of proteins in solution from a single small-angle X-ray scattering measurement on a relative scale. J Appl Cryst 43:101–109CrossRefGoogle Scholar
  28. 28.
    Mylonas E, Svergun DI (2007) Accuracy of molecular mass determination of proteins in solution by small-angle X-ray scattering. J Appl Cryst 40:S245–S249CrossRefGoogle Scholar
  29. 29.
    Orthaber D, Glatter O (2000) Synthetic phospholipid analogs: a structural investigation with scattering methods. Chem Phys Lipids 107(2):179–189CrossRefPubMedGoogle Scholar
  30. 30.
    Volkov VVS, Svergun DI (2003) Uniqueness of ab initio shape determination in small-angle scattering. J Appl Cryst 36:860–864CrossRefGoogle Scholar
  31. 31.
    DFaDI S (2009) DAMMIF, a program for rapid ab initio shape determination in small-angle scattering. J Appl Cryst 42(2):342–346CrossRefGoogle Scholar
  32. 32.
    DeLano WL (2002) The PyMOL molecular graphics System. DeLano Scientific, San Carlos, CA, USA.Google Scholar
  33. 33.
    Kozin MB, Svergun DI (2001) Automated matching of high- and low-resolution structural models. J Appl Cryst 34:33–41CrossRefGoogle Scholar
  34. 34.
    Svergun D, Barberato C, Koch MHJ (1995) CRYSOL - a program to evaluate x-ray solution scattering of biological macromolecules from atomic coordinates. J Appl Cryst 28:768–773CrossRefGoogle Scholar
  35. 35.
    Petoukhov MV, Svergun DI (2005) Global rigid body modeling of macromolecular complexes against small-angle scattering data. Biophys J 89(2):1237–1250CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Bendtsen JD, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340(4):783–795CrossRefPubMedGoogle Scholar
  37. 37.
    Krogh A, Larsson B, von Heijne G, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305(3):567–580CrossRefPubMedGoogle Scholar
  38. 38.
    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410CrossRefPubMedGoogle Scholar
  39. 39.
    Quevillon E et al (2005) InterProScan: protein domains identifier. Nucleic Acids Res 33(Web Server issue):116–120CrossRefGoogle Scholar
  40. 40.
    Lemesle-Varloot L et al (1990) Hydrophobic cluster analysis: procedures to derive structural and functional information from 2-D-representation of protein sequences. Biochimie 72(8):555–574CrossRefPubMedGoogle Scholar
  41. 41.
    Cole C, Barber JD, Barton GJ (2008) The Jpred 3 secondary structure prediction server. Nucleic Acids Res 36:W197–W201CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10(6):845–858CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Bernado P, Mylonas E, Petoukhov MV, Blackledge M, Svergun DI (2007) Structural characterization of flexible proteins using small-angle X-ray scattering. J Am Chem Soc 129(17):5656–5664CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.UPMC Univ Paris 06, CNRS, UMR 8227, Integrative Biology of Marine ModelsSorbonne UniversiteRoscoffFrance

Personalised recommendations