Advertisement

Separation and Visualization of Glycans by Fluorophore-Assisted Carbohydrate Electrophoresis

  • Mélissa Robb
  • Joanne K. Hobbs
  • Alisdair B. Boraston
Part of the Methods in Molecular Biology book series (MIMB, volume 1588)

Abstract

Fluorophore-assisted carbohydrate electrophoresis (FACE) is a method in which a fluorophore is covalently attached to the reducing end of carbohydrates, thereby allowing visualization following high-resolution separation by electrophoresis. This method can be used for carbohydrate profiling and sequencing, as well as for the determination of the specificity of carbohydrate-active enzymes. Here, we describe and demonstrate the use of FACE to separate and visualize the glycans released following digestion of oligosaccharides by glycoside hydrolases (GHs) using two examples: (1) the digestion of chitobiose by the streptococcal β-hexosaminidase GH20C, and (2) the digestion of glycogen by the GH13 member SpuA.

Key words

Fluorophore ANTS Electrophoresis Glycoside hydrolases Glycan digestion CAZymes 

Notes

Acknowledgments

This work has been supported by the Canadian Institute of Health Research operating grant MOP 130305.

References

  1. 1.
    Jackson P (1993) Fluorophore-assisted carbohydrate electrophoresis: a new technology for the analysis of glycans. Biochem Soc Trans 21:121–125CrossRefPubMedGoogle Scholar
  2. 2.
    Jackson P (1990) The use of polyacrylamide-gel electrophoresis for the high-resolution separation of reducing saccharides labelled with the fluorophore 8-aminonaphthalene-1,3,6-trisulphonic acid. Detection of picomolar quantities by an imaging system based on a cooled cha. Biochem J 270:705–713CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Jackson P (1996) The analysis of fluorophore-labeled carbohydrates by polyacrylamide gel electrophoresis. Mol Biotechnol 5:101–123CrossRefPubMedGoogle Scholar
  4. 4.
    Calabro A, Midura R, Wang A et al (2001) Fluorophore-assisted carbohydrate electrophoresis (FACE) of glycosaminoglycans. Osteoarthritis Cartilage 9:16–22CrossRefGoogle Scholar
  5. 5.
    Gao N (2005) Fluorophore-assisted carbohydrate electrophoresis: a sensitive and accurate method for the direct analysis of dolichol pyrophosphate-linked oligosaccharides in cell cultures and tissues. Methods 35:323–327CrossRefPubMedGoogle Scholar
  6. 6.
    Morell MK, Samuel MS, O’Shea MG (1998) Analysis of starch structure using fluorophore-assisted carbohydrate electrophoresis. Electrophoresis 19:2603–2611CrossRefPubMedGoogle Scholar
  7. 7.
    Starr CM, Masada RI, Hague C et al (1996) Fluorophore-assisted carbohydrate electrophoresis in the separation, analysis, and sequencing of carbohydrates. J Chromatogr A 720:295–321CrossRefPubMedGoogle Scholar
  8. 8.
    Young KD (1996) A simple gel electrophoretic method for analyzing the muropeptide composition of bacterial peptidoglycan. J Bacteriol 178:3962–3966CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Cordes EH, Jencks WP (1962) On the mechanism of schiff base formation and hydrolysis. J Am Chem Soc 84:832–837CrossRefGoogle Scholar
  10. 10.
    Kooy FK, Ma M, Beeftink HH et al (2009) Quantification and characterization of enzymatically produced hyaluronan with fluorophore-assisted carbohydrate electrophoresis. Anal Biochem 384:329–336CrossRefPubMedGoogle Scholar
  11. 11.
    Frado LY, Strickler JE (2000) Structural characterization of oligosaccharides in recombinant soluble human interferon receptor 2 using fluorophore-assisted carbohydrate electrophoresis. Electrophoresis 21:2296–2308CrossRefPubMedGoogle Scholar
  12. 12.
    Boraston AB, Sandercock LE, Warren RAJ, Kilburn DG (2003) O-glycosylation of a recombinant carbohydrate binding module mutant secreted by Pichia pastoris. J Mol Microbiol Biotechnol 5:29–36CrossRefPubMedGoogle Scholar
  13. 13.
    Bardor M, Cabanes-Macheteau M, Faye L, Lerouge P (2000) Monitoring the N-glycosylation of plant glycoproteins by fluorophore-assisted carbohydrate electrophoresis. Electrophoresis 21:2550–2556CrossRefPubMedGoogle Scholar
  14. 14.
    Basu SS, Dastgheibhosseini S, Hoover G et al (1994) Analysis of glycosphingolipids by fluorophore-assisted carbohydrate electrophoresis using ceramide glycanase from Mercenaria mercenaria. Anal Biochem 222:270–274CrossRefPubMedGoogle Scholar
  15. 15.
    De Rezende CE, Anriany Y, Carr LE et al (2005) Capsular polysaccharide surrounds smooth and rugose types of salmonella enterica serovar typhimurium DT104 capsular polysaccharide surrounds smooth and rugose types of salmonella enterica serovar typhimurium DT104. Appl Environ Microbiol 71:7245CrossRefGoogle Scholar
  16. 16.
    Oonuki Y, Yoshida Y, Uchiyama Y, Asari A (2005) Application of fluorophore-assisted carbohydrate electrophoresis to analysis of disaccharides and oligosaccharides derived from glycosaminoglycans. Anal Biochem 343:212–222CrossRefPubMedGoogle Scholar
  17. 17.
    Abbott DW, Higgins MA, Hyrnuik S et al (2010) The molecular basis of glycogen breakdown and transport in streptococcus pneumoniae. Mol Microbiol 77:183–199CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Gregg KJ, Zandberg WF, Hehemann J-H et al (2011) Analysis of a new family of widely distributed metal-independent alpha-mannosidases provides unique insight into the processing of N-linked glycans. J Biol Chem 286:15586–15596CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Hehemann J-H, Kelly AG, Pudlo NA et al (2012) Bacteria of the human gut microbiome catabolize red seaweed glycans with carbohydrate-active enzyme updates from extrinsic microbes. Proc Natl Acad Sci U S A 109:19786–19791CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Robb M, Robb CS, Higgins MA et al (2015) A second β-hexosaminidase encoded in the streptococcus pneumoniae genome provides an expanded biochemical ability to degrade host glycans. J Biol Chem 290:30888–30900CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Mélissa Robb
    • 1
  • Joanne K. Hobbs
    • 1
  • Alisdair B. Boraston
    • 1
  1. 1.Department of Biochemistry and MicrobiologyUniversity of VictoriaVictoriaCanada

Personalised recommendations