Skip to main content

Separation and Visualization of Glycans by Fluorophore-Assisted Carbohydrate Electrophoresis

  • Protocol
  • First Online:
Book cover Protein-Carbohydrate Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1588))

Abstract

Fluorophore-assisted carbohydrate electrophoresis (FACE) is a method in which a fluorophore is covalently attached to the reducing end of carbohydrates, thereby allowing visualization following high-resolution separation by electrophoresis. This method can be used for carbohydrate profiling and sequencing, as well as for the determination of the specificity of carbohydrate-active enzymes. Here, we describe and demonstrate the use of FACE to separate and visualize the glycans released following digestion of oligosaccharides by glycoside hydrolases (GHs) using two examples: (1) the digestion of chitobiose by the streptococcal β-hexosaminidase GH20C, and (2) the digestion of glycogen by the GH13 member SpuA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jackson P (1993) Fluorophore-assisted carbohydrate electrophoresis: a new technology for the analysis of glycans. Biochem Soc Trans 21:121–125

    Article  CAS  PubMed  Google Scholar 

  2. Jackson P (1990) The use of polyacrylamide-gel electrophoresis for the high-resolution separation of reducing saccharides labelled with the fluorophore 8-aminonaphthalene-1,3,6-trisulphonic acid. Detection of picomolar quantities by an imaging system based on a cooled cha. Biochem J 270:705–713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jackson P (1996) The analysis of fluorophore-labeled carbohydrates by polyacrylamide gel electrophoresis. Mol Biotechnol 5:101–123

    Article  CAS  PubMed  Google Scholar 

  4. Calabro A, Midura R, Wang A et al (2001) Fluorophore-assisted carbohydrate electrophoresis (FACE) of glycosaminoglycans. Osteoarthritis Cartilage 9:16–22

    Article  Google Scholar 

  5. Gao N (2005) Fluorophore-assisted carbohydrate electrophoresis: a sensitive and accurate method for the direct analysis of dolichol pyrophosphate-linked oligosaccharides in cell cultures and tissues. Methods 35:323–327

    Article  CAS  PubMed  Google Scholar 

  6. Morell MK, Samuel MS, O’Shea MG (1998) Analysis of starch structure using fluorophore-assisted carbohydrate electrophoresis. Electrophoresis 19:2603–2611

    Article  CAS  PubMed  Google Scholar 

  7. Starr CM, Masada RI, Hague C et al (1996) Fluorophore-assisted carbohydrate electrophoresis in the separation, analysis, and sequencing of carbohydrates. J Chromatogr A 720:295–321

    Article  CAS  PubMed  Google Scholar 

  8. Young KD (1996) A simple gel electrophoretic method for analyzing the muropeptide composition of bacterial peptidoglycan. J Bacteriol 178:3962–3966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cordes EH, Jencks WP (1962) On the mechanism of schiff base formation and hydrolysis. J Am Chem Soc 84:832–837

    Article  CAS  Google Scholar 

  10. Kooy FK, Ma M, Beeftink HH et al (2009) Quantification and characterization of enzymatically produced hyaluronan with fluorophore-assisted carbohydrate electrophoresis. Anal Biochem 384:329–336

    Article  CAS  PubMed  Google Scholar 

  11. Frado LY, Strickler JE (2000) Structural characterization of oligosaccharides in recombinant soluble human interferon receptor 2 using fluorophore-assisted carbohydrate electrophoresis. Electrophoresis 21:2296–2308

    Article  CAS  PubMed  Google Scholar 

  12. Boraston AB, Sandercock LE, Warren RAJ, Kilburn DG (2003) O-glycosylation of a recombinant carbohydrate binding module mutant secreted by Pichia pastoris. J Mol Microbiol Biotechnol 5:29–36

    Article  CAS  PubMed  Google Scholar 

  13. Bardor M, Cabanes-Macheteau M, Faye L, Lerouge P (2000) Monitoring the N-glycosylation of plant glycoproteins by fluorophore-assisted carbohydrate electrophoresis. Electrophoresis 21:2550–2556

    Article  CAS  PubMed  Google Scholar 

  14. Basu SS, Dastgheibhosseini S, Hoover G et al (1994) Analysis of glycosphingolipids by fluorophore-assisted carbohydrate electrophoresis using ceramide glycanase from Mercenaria mercenaria. Anal Biochem 222:270–274

    Article  CAS  PubMed  Google Scholar 

  15. De Rezende CE, Anriany Y, Carr LE et al (2005) Capsular polysaccharide surrounds smooth and rugose types of salmonella enterica serovar typhimurium DT104 capsular polysaccharide surrounds smooth and rugose types of salmonella enterica serovar typhimurium DT104. Appl Environ Microbiol 71:7245

    Article  Google Scholar 

  16. Oonuki Y, Yoshida Y, Uchiyama Y, Asari A (2005) Application of fluorophore-assisted carbohydrate electrophoresis to analysis of disaccharides and oligosaccharides derived from glycosaminoglycans. Anal Biochem 343:212–222

    Article  CAS  PubMed  Google Scholar 

  17. Abbott DW, Higgins MA, Hyrnuik S et al (2010) The molecular basis of glycogen breakdown and transport in streptococcus pneumoniae. Mol Microbiol 77:183–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gregg KJ, Zandberg WF, Hehemann J-H et al (2011) Analysis of a new family of widely distributed metal-independent alpha-mannosidases provides unique insight into the processing of N-linked glycans. J Biol Chem 286:15586–15596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hehemann J-H, Kelly AG, Pudlo NA et al (2012) Bacteria of the human gut microbiome catabolize red seaweed glycans with carbohydrate-active enzyme updates from extrinsic microbes. Proc Natl Acad Sci U S A 109:19786–19791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Robb M, Robb CS, Higgins MA et al (2015) A second β-hexosaminidase encoded in the streptococcus pneumoniae genome provides an expanded biochemical ability to degrade host glycans. J Biol Chem 290:30888–30900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Canadian Institute of Health Research operating grant MOP 130305.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alisdair B. Boraston .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Robb, M., Hobbs, J.K., Boraston, A.B. (2017). Separation and Visualization of Glycans by Fluorophore-Assisted Carbohydrate Electrophoresis. In: Abbott, D., Lammerts van Bueren, A. (eds) Protein-Carbohydrate Interactions. Methods in Molecular Biology, vol 1588. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6899-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6899-2_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6898-5

  • Online ISBN: 978-1-4939-6899-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics