CBMs as Probes to Explore Plant Cell Wall Heterogeneity Using Immunocytochemistry

  • Louise Badruna
  • Vincent Burlat
  • Cédric Y. Montanier
Part of the Methods in Molecular Biology book series (MIMB, volume 1588)


Immunocytochemistry is a widely used technique to localize antigen within intact tissues. Plant cell walls are complex matrixes of highly decorated polysaccharides and the large number of CBM families displaying specific substrate recognition reflects this complexity. The accessibility of large proteins, such as antibodies, to their cell wall epitopes may be sometimes difficult due to steric hindrance problems. Due to their smaller size, CBMs are interesting alternative probes. The aim of this chapter is to describe the use of CBM as probes to explore complex polysaccharide topochemistry in muro and to quantify enzymatic deconstruction.

Key words

Wheat straw section Immunocytochemistry Enzymatic hydrolysis Fluorescence Microscopy 



We acknowledge Alain Jauneau and Aurelie Le Ru for technical assistance on Nanozoomer RS provided by the TRI-genotoul facility (


  1. 1.
    Himmel ME, Ding S-Y, Johnson DK, Adney WS, Nimlos MR, Brady JW et al (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–807CrossRefPubMedGoogle Scholar
  2. 2.
    Velickovic D, Ropartz D, Guillon F, Saulnier L, Rogniaux H (2014) New insights into the structural and spatial variability of cell-wall polysaccharides during wheat grain development, as revealed through MALDI mass spectrometry imaging. J Exp Bot 65(8):2079–2091CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Scheller HV, Ulvskov P (2010) Hemicelluloses. Annu Rev Plant Biol 61(1):263–289CrossRefPubMedGoogle Scholar
  4. 4.
    McCartney L, Ormerod AP, Gidley MJ, Knox JP (2000) Temporal and spatial regulation of pectic (1-4)-beta-d-galactan in cell walls of developing pea cotyledons: implications for mechanical properties. Plant J 22(2):105–113CrossRefPubMedGoogle Scholar
  5. 5.
    Freshour G, Clay RP, Fuller MS, Albersheim P, Darvill AG, Hahn MG (1996) Developmental and tissue-specific structural alterations of the cell-wall polysaccharides of Arabidopsis thaliana roots. Plant Physiol 110(4):1413–1429CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    McCartney L, Marcus SE, Knox JP (2005 Apr) Monoclonal antibodies to plant cell wall xylans and arabinoxylans. J Histochem Cytochem 53(4):543–546CrossRefPubMedGoogle Scholar
  7. 7.
    Boraston AB, Bolam DN, Gilbert HJ, Davies GJ (2004) Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J 781:769–781CrossRefGoogle Scholar
  8. 8.
    Black GW, Hazlewood GP, Millward-Sadler SJ, Laurie JI, Gilbert HJ (1995) A modular xylanase containing a novel non-catalytic xylan-specific binding domain. Biochem J 307(1):191–195CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Van Tilbeurgh H, Tomme P, Claeyssens M, Bhikhabhai R, Petterson G (1986) Limited proteolysis of the cellobiohydrolase I from Trichoderma reesei. FEBS Lett 204(2):223–227CrossRefGoogle Scholar
  10. 10.
    Coutinho JB, Gilkes NR, Warren RAJ, Kilburn DG, Miller RC (1992) The binding of Cellulomonas fimi endoglucanase C (CenC) to cellulose and Sephadex is mediated by the N-terminal repeats. Mol Microbiol 6(9):1243–1252CrossRefPubMedGoogle Scholar
  11. 11.
    Stoll D, Boraston A, Stålbrand H, McLean BW, Kilburn DG, Warren RAJ (2000) Mannanase Man26A from Cellulomonas fimi has a mannan-binding module. FEMS Microbiol Lett 183(2):265–269CrossRefPubMedGoogle Scholar
  12. 12.
    Sorimachi K, Le Gal-Coëffet M-F, Williamson G, Archer DB, Williamson MP (1997) Solution structure of the granular starch binding domain of Aspergillus niger glucoamylase bound to β-cyclodextrin. Structure 5(5):647–661CrossRefPubMedGoogle Scholar
  13. 13.
    Ruel K, Joseleau JP (1984) Use of enzyme-gold complexes for the ultrastructural localization of hemicelluloses in the plant cell wall. Histochemistry 81(6):573–580CrossRefPubMedGoogle Scholar
  14. 14.
    Bendayan M, Banhamou N (1987) Ultrastructural localization of glucoside residues on tissue sections by applying the enzyme-gold approach. J Histochem Cytochem 35(10):1149–1155CrossRefPubMedGoogle Scholar
  15. 15.
    Hilden L, Daniel G, Johansson G (2003) Use of a fluorescence labelled, carbohydrate-binding module from Phanerochaete chrysosporium Cel7D for studying wood cell wall ultrastructure. Biotechnol Lett 25:553–558CrossRefPubMedGoogle Scholar
  16. 16.
    McCartney L, Gilbert HJ, Bolam DN, Boraston AB, Knox JP (2004) Glycoside hydrolase carbohydrate-binding modules as molecular probes for the analysis of plant cell wall polymers. Anal Biochem 326:49–54CrossRefPubMedGoogle Scholar
  17. 17.
    Tomme P, Boraston A, McLean B, Kormos J, Creagh AL, Sturch K et al (1998) Characterization and affinity applications of cellulose-binding. J Chromatogr 715:283–296CrossRefGoogle Scholar
  18. 18.
    Hervé C, Rogowski A, Gilbert HJ, Knox JP (2009) Enzymatic treatments reveal differential capacities for xylan recognition and degradation in primary and secondary plant cell walls. Plant J 58(3):413–422CrossRefPubMedGoogle Scholar
  19. 19.
    McCartney L, Blake AW, Flint J, Bolam DN, Boraston AB, Gilbert HJ et al (2006) Differential recognition of plant cell walls by microbial xylan-specific carbohydrate-binding modules. Proc Natl Acad Sci U S A 103(12):4765–4770CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Blake AW, McCartney L, Flint JE, Bolam DN, Boraston AB, Gilbert HJ et al (2006 Sep) Understanding the biological rationale for the diversity of cellulose-directed carbohydrate-binding modules in prokaryotic enzymes. J Biol Chem 281:29321–29329CrossRefPubMedGoogle Scholar
  21. 21.
    Mondolot L, Roussel JL, Andary C (2001) New applications for an old lignified element staining reagent. Histochem J 33(7):379–385CrossRefPubMedGoogle Scholar
  22. 22.
    Sauter M, Seagull RW, Kende H (1993) Internodal elongation and orientation of cellulose microfibrils and microtubules in deepwater rice. Planta 190(3):354–362CrossRefGoogle Scholar
  23. 23.
    Knox JP (2012) In situ detection of cellulose with carbohydrate-binding modules. In: Methods in Enzymology, 1st edn. Elsevier Inc., Amsterdam, pp 233–245Google Scholar
  24. 24.
    Hoch HC, Galvani CD, Szarowski DH, Turner JN (2005) Two new fluorescent dyes applicable for visualization of fungal cell walls. Mycologia 97(3):580–588CrossRefPubMedGoogle Scholar
  25. 25.
    Marcus SE, Blake AW, Benians TAS, Lee KJD, Poyser C, Donaldson L et al (2010 Oct) Restricted access of proteins to mannan polysaccharides in intact plant cell walls. Plant J 64:191–203CrossRefPubMedGoogle Scholar
  26. 26.
    Ordaz-Ortiz JJ, Marcus SE, Knox PJ (2009) Cell wall microstructure analysis implicates hemicellulose polysaccharides in cell adhesion in tomato fruit pericarp parenchyma. Mol Plant 2(5):910–921CrossRefPubMedGoogle Scholar
  27. 27.
    Lamed R, Setter E, Bayer EA (1983) Characterization of a cellulose-binding, cellulase-containing complex in Clostridium thermocellum. J Bacteriol 156(2):828–836PubMedPubMedCentralGoogle Scholar
  28. 28.
    Shoham Y, Lamed R, Bayer EA (1999) The cellulosome concept as an efficient microbial strategy for the degradation of insoluble polysaccharides. Trends Microbiol 7(7):275–281CrossRefPubMedGoogle Scholar
  29. 29.
    Leroux O, Leroux F, Bagniewska-Zadworna A, Knox JP, Claeys M, Bals S et al (2011) Ultrastructure and composition of cell wall appositions in the roots of Asplenium (Polypodiales). Micron 42(8):863–870CrossRefPubMedGoogle Scholar
  30. 30.
    Hervé C, Rogowski A, Blake AW, Marcus SE, Gilbert HJ, Knox JP (2010) Carbohydrate-binding modules promote the enzymatic deconstruction of intact plant cell walls by targeting and proximity effects. Proc Natl Acad Sci U S A 107(34):15293–15298CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Matos DA, Whitney IP, Harrington MJ, Hazen SP (2013) Cell walls and the developmental anatomy of the Brachypodium distachyon stem internode. PLoS One 8(11):1–9Google Scholar
  32. 32.
    Moller I, Sørensen I, Bernal AJ, Blaukopf C, Lee K, Øbro J et al (2007) High-throughput mapping of cell-wall polymers within and between plants using novel microarrays. Plant J 50:1118–1128Google Scholar
  33. 33.
    Zhang M, Wang B, Xu B (2013) Measurements of single molecular affinity interactions between carbohydrate-binding modules and crystalline cellulose fibrils. Phys Chem Chem Phys 15:6508–6515CrossRefPubMedGoogle Scholar
  34. 34.
    Bertrand I, Chabbert B, Kurek B, Recous S (2006) Can the biochemical features and histology of wheat residues explain their decomposition in soil? Plant and Soil 281(1–2):291–307CrossRefGoogle Scholar
  35. 35.
    Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675CrossRefPubMedGoogle Scholar
  36. 36.
    Burlat V, Oudin A, Courtois M, Rideau M, St-Pierre B (2004 Apr) Co-expression of three MEP pathway genes and geraniol 10-hydroxylase in internal phloem parenchyma of Catharanthus roseus implicates multicellular translocation of intermediates during the biosynthesis of monoterpene indole alkaloids and isoprenoid-derive. Plant J 38:131–141CrossRefPubMedGoogle Scholar
  37. 37.
    Ruzin BSE (1999) Plant microtechnique and microscopy. Oxford Univ Press, OxfordGoogle Scholar
  38. 38.
    Francoz E, Ranocha P, Pernot C, Le Ru A, Pacquit V, Dunand C et al (2016) Complementarity of medium- throughput in situ RNA hybridization and tissue-specific transcriptomics : case study of Arabidopsis seed development kinetics. Sci Rep 6:24644CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Louise Badruna
    • 1
  • Vincent Burlat
    • 2
  • Cédric Y. Montanier
    • 1
  1. 1.LISBPUniversité de Toulouse, CNRS, INRA, INSAToulouseFrance
  2. 2.Laboratoire de Recherche en Sciences VégétalesCastanet-TolosanFrance

Personalised recommendations