Advertisement

Bioinspired Assemblies of Plant Cell Walls for Measuring Protein-Carbohydrate Interactions by FRAP

  • Gabriel Paës
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1588)

Abstract

The interactions of proteins involved in plant cell wall hydrolysis, such as enzymes and CBMs, significantly determine their role and efficiency. In order to go beyond the characterization of interactions with simple ligands, bioinspired assemblies combined with the measurement of diffusion and interaction by FRAP offer a relevant alternative for highlighting the importance of different parameters related to the protein affinity and to the assembly.

Key words

Bioinspired Diffusion Interaction Ligand Protein Enzyme CBM FRAP 

Notes

Acknowledgment

This work was supported by INRA and the French National Research Agency (LIGNOPROG project ANR-14-CE05-0026).

References

  1. 1.
    Isikgor FH, Becer CR (2015) Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polym Chem 6(25):4497–4559CrossRefGoogle Scholar
  2. 2.
    Viikari L, Vehmaanperä J, Koivula A (2012) Lignocellulosic ethanol: from science to industry. Biomass Bioenergy 46:13–24CrossRefGoogle Scholar
  3. 3.
    Guo FF, Shi WJ, Sun W, Li XZ, Wang FF, Zhao J, Qu YB (2014) Differences in the adsorption of enzymes onto lignins from diverse types of lignocellulosic biomass and the underlying mechanism. Biotechnol Biofuels 7Google Scholar
  4. 4.
    Guo J, Catchmark JM (2013) Binding specificity and thermodynamics of cellulose-binding modules from Trichoderma reesei Cel7A and Cel6A. Biomacromolecules 14(5):1268–1277CrossRefPubMedGoogle Scholar
  5. 5.
    Paës G, Tran V, Takahashi M, Boukari I, O'Donohue MJ (2007) New insights into the role of the thumb-like loop in GH-11 xylanases. Protein Eng Des Sel 20(1):15–23CrossRefPubMedGoogle Scholar
  6. 6.
    Wang LQ, Wang YQ, Ragauskas AJ (2010) A novel FRET approach for in situ investigation of cellulase-cellulose interaction. Anal Bioanal Chem 398(3):1257–1262CrossRefPubMedGoogle Scholar
  7. 7.
    King JR, Bowers CM, Toone EJ (2015) Specific binding at the cellulose binding module-cellulose interface observed by force spectroscopy. Langmuir 31(11):3431–3440CrossRefPubMedGoogle Scholar
  8. 8.
    Carvajal-Millan E, Guilbert S, Morel MH, Micard V (2005) Impact of the structure of arabinoxylan gels on their rheological and protein transport properties. Carbohydr Polym 60(4):431–438CrossRefGoogle Scholar
  9. 9.
    Carvajal-Millan E, Landillon V, Morel MH, Rouau X, Doublier JL, Micard V (2005) Arabinoxylan gels: impact of the feruloylation degree on their structure and properties. Biomacromolecules 6(1):309–317CrossRefPubMedGoogle Scholar
  10. 10.
    Paës G, Burr S, Saab M-B, Molinari M, Aguié-Béghin V, Chabbert B (2013) Modeling progression of fluorescent probes in bioinspired lignocellulosic assemblies. Biomacromolecules 14(7):2196–2205CrossRefPubMedGoogle Scholar
  11. 11.
    Paës G, Chabbert B (2012) Characterization of arabinoxylan/cellulose nanocrystals gels to investigate fluorescent probes mobility in bio-inspired models of plant secondary cell wall. Biomacromolecules 13:206–214CrossRefPubMedGoogle Scholar
  12. 12.
    Ishikawa-Ankerhold HC, Ankerhold R, Drummen GPC (2012) Advanced fluorescence microscopy techniques-FRAP, FLIP, FLAP, FRET and FLIM. Molecules 17(4):4047–4132CrossRefPubMedGoogle Scholar
  13. 13.
    Lippincott-Schwartz J, Snapp E, Kenworthy A (2001) Studying protein dynamics in living cells. Nat Rev Mol Cell Biol 2(6):444–456CrossRefPubMedGoogle Scholar
  14. 14.
    Paës G (2014) Fluorescent probes for exploring plant cell wall deconstruction: a review. Molecules 19(7):9380–9402CrossRefPubMedGoogle Scholar
  15. 15.
    Paës G, von Schantz L, Ohlin M (2015) Bioinspired assemblies of plant cell wall polymers unravel affinity properties of carbohydrate-binding modules. Soft Matter 11:6586–6594CrossRefPubMedGoogle Scholar
  16. 16.
    Fong M, Berrin JG, Paës G (2016) Investigation of the binding properties of a multi-modular GH45 cellulase using bioinspired model assemblies. Biotechnol Biofuels 9:12CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Aguié-Béghin V, Molinari M, Hambarzymyan A, Foulon L, Habibi Y, Heim T, Blossey R, Douillard R (2009) Preparation of ordered films from cellulose nanocrystals. In: Roman M (ed) Model cellulosic surfaces, vol 1019. ACS symposium series 1019: American Chemical Society, Washington DC, USA, pp 115–136Google Scholar
  18. 18.
    Mueller F, Karpova TS, Mazza D, McNally JG (2012) Monitoring dynamic binding of chromatin proteins in vivo by fluorescence recovery after photobleaching chromatin remodeling. In: RHH M (ed) Methods in molecular biology, vol vol 833. Humana Press, New York, pp 153–176Google Scholar
  19. 19.
    Sprague BL, McNally JG (2005) FRAP analysis of binding: proper and fitting. Trends Cell Biol 15(2):84–91CrossRefPubMedGoogle Scholar
  20. 20.
    Hermanson GT (2008) Bioconjugate techniques, 2nd edn. Elsevier, LondonGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.FARE laboratory, INRAUniversity of Reims Champagne-ArdenneReimsFrance

Personalised recommendations