Skip to main content

Measuring the Biomechanical Loosening Action of Bacterial Expansins on Paper and Plant Cell Walls

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1588))

Abstract

Expansins are proteins that loosen plant cell walls but lack enzymatic activity. Here, we describe two protocols tailored to measure the biomechanical activity of bacterial expansin. The first assay relies on weakening of filter paper by expansin. The second assay is based on induction of creep (long-term, irreversible extension) of plant cell wall samples.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Cosgrove DJ (2016) Catalysts of plant cell wall loosening. F1000Research 5

    Google Scholar 

  2. Cosgrove DJ (2000) Loosening of plant cell walls by expansins. Nature 407:321–326

    Article  CAS  PubMed  Google Scholar 

  3. McQueen-Mason S, Durachko DM, Cosgrove DJ (1992) Two endogenous proteins that induce cell wall extension in plants. Plant Cell 4:1425–1433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Whitney SEC, Gidley MJ, McQueen-Mason SJ (2000) Probing expansin action using cellulose/hemicellulose composites. Plant J 22:327–334

    Article  CAS  PubMed  Google Scholar 

  5. Qin L, Kudla U, Roze EH, Goverse A, Popeijus H, Nieuwland J, Overmars H, Jones JT, Schots A, Smant G, Bakker J, Helder J (2004) Plant degradation: a nematode expansin acting on plants. Nature 427:30

    Article  CAS  PubMed  Google Scholar 

  6. Cho HT, Kende H (1997) Expansins in deepwater rice internodes. Plant Physiol 113:1137–1143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kerff F, Amoroso A, Herman R, Sauvage E, Petrella S, Filee P, Charlier P, Joris B, Tabuchi A, Nikolaidis N, Cosgrove DJ (2008) Crystal structure and activity of Bacillus subtilis yoaj (exlx1), a bacterial expansin that promotes root colonization. Proc Natl Acad Sci U S A 105:16876–16881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cosgrove DJ (2005) Growth of the plant cell wall. Nat Rev Mol Cell Biol 6:850–861

    Article  CAS  PubMed  Google Scholar 

  9. Zhang T, Zheng Y, Cosgrove DJ (2016) Spatial organization of cellulose microfibrils and matrix polysaccharides in primary plant cell walls as imaged by multichannel atomic force microscopy. Plant J 85:179–192

    Article  CAS  PubMed  Google Scholar 

  10. Cosgrove DJ (2015) Plant expansins: diversity and interactions with plant cell walls. Curr Opin Plant Biol 25:162–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Burgert I, Keplinger T (2013) Plant micro- and nanomechanics: experimental techniques for plant cell-wall analysis. J Exp Bot 64:4635–4649

    Article  CAS  PubMed  Google Scholar 

  12. Nolte T, Schopfer P (1997) Viscoelastic versus plastic cell wall extensibility in growing seedling organs: a contribution to avoid some misconceptions. J Exp Bot 48:2103–2107

    Article  CAS  Google Scholar 

  13. Cleland RE (1984) The instron technique as a measure of immediate-past wall extensibility. Planta 160:514–520

    Article  CAS  PubMed  Google Scholar 

  14. Takahashi K, Hirata S, Kido N, Katou K (2006) Wall-yielding properties of cell walls from elongating cucumber hypocotyls in relation to the action of expansin. Plant Cell Physiol 47:1520–1529

    Article  CAS  PubMed  Google Scholar 

  15. Cosgrove DJ (2016) Plant cell wall extensibility: connecting plant cell growth with cell wall structure, mechanics, and the action of wall-modifying enzymes. J Exp Bot 67:463–476

    Article  CAS  PubMed  Google Scholar 

  16. Wang T, Park YB, Caporini MA, Rosay M, Zhong L, Cosgrove DJ, Hong M (2013) Sensitivity-enhanced solid-state nmr detection of expansin’s target in plant cell walls. Proc Natl Acad Sci U S A 110:16444–16449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cosgrove DJ (2014) Re-constructing our models of cellulose and primary cell wall assembly. Curr Opin Plant Biol 22C:122–131

    Article  Google Scholar 

  18. Georgelis N, Nikolaidis N, Cosgrove DJ (2015) Bacterial expansins and related proteins from the world of microbes. Appl Microbiol Biotechnol 99:3807–3823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pastor N, Davila S, Perez-Rueda E, Segovia L, Martinez-Anaya C (2014) Electrostatic analysis of bacterial expansins. Proteins 83:215–223

    Article  PubMed  Google Scholar 

  20. Nikolaidis N, Doran N, Cosgrove DJ (2014) Plant expansins in bacteria and fungi: evolution by horizontal gene transfer and independent domain fusion. Mol Biol Evol 31:376–386

    Article  CAS  PubMed  Google Scholar 

  21. Durachko DM, Cosgrove DJ (2009) Measuring plant cell wall extension (creep) induced by acidic ph and by alpha-expansin. J Vis Exp: JoVE 25:1263

    Google Scholar 

  22. Sampedro J, Guttman M, Li LC, Cosgrove DJ (2015) Evolutionary divergence of beta-expansin structure and function in grasses parallels emergence of distinctive primary cell wall traits. Plant J 81:108–120

    Article  CAS  PubMed  Google Scholar 

  23. Cosgrove DJ, Bedinger P, Durachko DM (1997) Group I allergens of grass pollen as cell wall-loosening agents. Proc Natl Acad Sci U S A 94:6559–6564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li LC, Bedinger PA, Volk C, Jones AD, Cosgrove DJ (2003) Purification and characterization of four beta-expansins (zea m 1 isoforms) from maize pollen. Plant Physiol 132:2073–2085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Carpita NC (1996) Structure and biogenesis of the cell walls of grasses. Annu Rev Plant Physiol Plant Mol Biol 47:445–476

    Article  CAS  PubMed  Google Scholar 

  26. Georgelis N, Nikolaidis N, Cosgrove DJ (2014) Biochemical analysis of expansin-like proteins from microbes. Carbohydr Polym 100:17–23

    Article  CAS  PubMed  Google Scholar 

  27. Georgelis N, Tabuchi A, Nikolaidis N, Cosgrove DJ (2011) Structure-function analysis of the bacterial expansin exlx1. J Biol Chem 286:16814–16823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

This work was supported by United States Department of Energy Grant DE-FG02-84ER13179 from the Office of Basic Energy Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel J. Cosgrove .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Cosgrove, D.J., Hepler, N.K., Wagner, E.R., Durachko, D.M. (2017). Measuring the Biomechanical Loosening Action of Bacterial Expansins on Paper and Plant Cell Walls. In: Abbott, D., Lammerts van Bueren, A. (eds) Protein-Carbohydrate Interactions. Methods in Molecular Biology, vol 1588. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6899-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6899-2_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6898-5

  • Online ISBN: 978-1-4939-6899-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics