Characterization of Protein-Carbohydrate Interactions by NMR Spectroscopy

  • Julie M. Grondin
  • David N. Langelaan
  • Steven P. Smith
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1588)

Abstract

Solution-state nuclear magnetic resonance (NMR) spectroscopy can be used to monitor protein-carbohydrate interactions. Two-dimensional 1H-15N heteronuclear single quantum coherence (HSQC)-based techniques described in this chapter can be used quickly and effectively to screen a set of possible carbohydrate binding partners, to quantify the dissociation constant (Kd) of any identified interactions, and to map the carbohydrate binding site on the structure of the protein. Here, we describe the titration of a family 32 carbohydrate binding module from Clostridium perfringens (CpCBM32) with the monosaccharide N-acetylgalactosamine (GalNAc), in which we calculate the apparent dissociation of the interaction, and map the GalNAc binding site onto the structure of CpCBM32.

Key words

Chemical shift perturbation Dissociation constant (KdHeteronuclear single quantum coherence (HSQC) Nuclear magnetic resonance (NMR) Protein-carbohydrate interactions 

References

  1. 1.
    Zuiderweg ER (2002) Mapping protein-protein interactions in solution by NMR spectroscopy. Biochemistry 41(1):1–7CrossRefPubMedGoogle Scholar
  2. 2.
    Haselhorst T, Lamerz AC, Itzstein M (2009) Saturation transfer difference NMR spectroscopy as a technique to investigate protein-carbohydrate interactions in solution. Methods Mol Biol 534:375–386PubMedGoogle Scholar
  3. 3.
    Johnson MA, Pinto BM (2004) NMR spectroscopic and molecular modeling studies of protein-carbohydrate and protein-peptide interactions. Carbohydr Res 339(5):907–928CrossRefPubMedGoogle Scholar
  4. 4.
    Kay LE, Keifer P, Saarinen T (1992) Pure absorption gradient enhanced heteronuclear single quantum correlation spectroscopy with improved sensitivity. J Am Chem Soc 114:10663–10665CrossRefGoogle Scholar
  5. 5.
    Lian LY et al (1994) Protein-ligand interactions: exchange processes and determination of ligand conformation and protein-ligand contacts. Methods Enzymol 239:657–700CrossRefPubMedGoogle Scholar
  6. 6.
    Johnson BA (2004) Using NMRView to visualize and analyze the NMR spectra of macromolecules. Methods Mol Biol 278:313–352PubMedGoogle Scholar
  7. 7.
    Vranken WF et al (2005) The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins 59(4):687–696CrossRefPubMedGoogle Scholar
  8. 8.
    Grondin JM et al (2014) An unusual mode of galactose recognition by a family 32 carbohydrate-binding module. J Mol Biol 426(4):869–880CrossRefPubMedGoogle Scholar
  9. 9.
    Viegas A et al (2013) Solution structure, dynamics and binding studies of a family 11 carbohydrate-binding module from Clostridium thermocellum (CtCBM11). Biochem J 451(2):289–300CrossRefPubMedGoogle Scholar
  10. 10.
    Koay A et al (2007) Oligosaccharide recognition and binding to the carbohydrate binding module of AMP-activated protein kinase. FEBS Lett 581(26):5055–5059CrossRefPubMedGoogle Scholar
  11. 11.
    Ohnuma T et al (2008) LysM domains from Pteris ryukyuensis chitinase-A: a stability study and characterization of the chitin-binding site. J Biol Chem 283(8):5178–5187CrossRefPubMedGoogle Scholar
  12. 12.
    Boraston AB et al (2004) Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J 382(Pt 3):769–781CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Boraston AB, Ficko-Blean E, Healey M (2007) Carbohydrate recognition by a large sialidase toxin from Clostridium perfringens. Biochemistry 46(40):11352–11360CrossRefPubMedGoogle Scholar
  14. 14.
    Ficko-Blean E, Boraston AB (2009) N-acetylglucosamine recognition by a family 32 carbohydrate-binding module from Clostridium perfringens NagH. J Mol Biol 390(2):208–220CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Ficko-Blean E et al (2012) Carbohydrate recognition by an architecturally complex alpha-N-acetylglucosaminidase from Clostridium perfringens. PLoS One 7(3):e33524CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Ficko-Blean E, Boraston AB (2006) The interaction of a carbohydrate-binding module from a Clostridium perfringens N-acetyl-beta-hexosaminidase with its carbohydrate receptor. J Biol Chem 281(49):37748–37757CrossRefPubMedGoogle Scholar
  17. 17.
    Wilkins MR et al (1999) Protein identification and analysis tools in the ExPASy server. Methods Mol Biol 112:531–552PubMedGoogle Scholar
  18. 18.
    Shekels LL et al (1998) Cloning and characterization of mouse intestinal MUC3 mucin: 3' sequence contains epidermal-growth-factor-like domains. Biochem J 330(Pt 3):1301–1308CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Delaglio F et al (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6(3):277–293CrossRefPubMedGoogle Scholar
  20. 20.
    DeLano WL (2002) The PyMOL molecular graphics system, Version 1.8 Schrödinger, LLCGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Julie M. Grondin
    • 1
  • David N. Langelaan
    • 2
  • Steven P. Smith
    • 3
  1. 1.Lethbridge Research CenterAgriculture and Agri-Food CanadaLethbridgeCanada
  2. 2.Department of Biochemistry and Molecular BiologyDalhousie UniversityHalifaxCanada
  3. 3.Department of Biomedical and Molecular SciencesQueen’s UniversityKingstonCanada

Personalised recommendations