Advertisement

Quantifying CBM Carbohydrate Interactions Using Microscale Thermophoresis

  • Haiyang Wu
  • Cédric Y. Montanier
  • Claire Dumon
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1588)

Abstract

MicroScale Thermophoresis (MST) is an emerging technology for studying a broad range of biomolecular interactions with high sensitivity. The affinity constant can be obtained for a wide range of molecules within minutes based on reactions in microliters. Here, we describe the application of MST in quantifying two CBM-carbohydrate interactions, a CBM3a toward cellulose nanocrystals and a CBM4 against xylohexaose.

Key words

Microscale thermophoresis (MST) Binding studies Fluorescence quenching Fluorescent label Kd (dissociation constant) 

Notes

Acknowledgment

We acknowledge the Fédération de Recherche Agrobiosciences, Interactions et Biodiversité (FR 3450), CNRS, Université de Toulouse, UPS, Castanet-Tolosan, France, and the IDEX “UNITI” Université de Toulouse (GO-AHEAD project) for the Nanotemper Monolith NT.115 facilities.

References

  1. 1.
    Abbott DW, Boraston AB (2012) Quantitative approaches to the analysis of carbohydrate-binding module function. Methods Enzymol 510:211–231. doi: 10.1016/B978-0-12-415931-0.00011-2 CrossRefPubMedGoogle Scholar
  2. 2.
    Duhr S, Braun D (2006) Thermophoretic depletion follows boltzmann distribution. Phys Rev Lett 96:1–4. doi: 10.1103/PhysRevLett.96.168301 CrossRefGoogle Scholar
  3. 3.
    Duhr S, Braun D (2006) Why molecules move along a temperature gradient. Proc Natl Acad Sci U S A 103:19678–19682. doi: 10.1073/pnas.0603873103 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Jerabek-Willemsen M, André T, Wanner R et al (2014) MicroScale thermophoresis: interaction analysis and beyond. J Mol Struct 1077:101–113. doi: 10.1016/j.molstruc.2014.03.009 CrossRefGoogle Scholar
  5. 5.
    Baaske P, Wienken CJ, Reineck P et al (2010) Optical thermophoresis for quantifying the buffer dependence of aptamer binding. Angew Chem Int Ed Engl 49:2238–2241. doi: 10.1002/anie.200903998 CrossRefPubMedGoogle Scholar
  6. 6.
    Tormo J, Lamed R, Chirino AJ et al (1996) Crystal structure of a bacterial family-III cellulose-binding domain: a general mechanism for attachment to cellulose. EMBO J 15:5739–5751PubMedPubMedCentralGoogle Scholar
  7. 7.
    Bastien GG, Arnal GG, Bozonnet S et al (2013) Mining for hemicellulases in the fungus-growing termite Pseudacanthotermes militaris using functional metagenomics. Biotechnol Biofuels 6:78. doi: 10.1186/1754-6834-6-78 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Martinez T, Texier H, Nahoum V et al (2015) Probing the functions of carbohydrate binding modules in the cbel protein from the oomycete phytophthora parasitica. PLoS One 10:1–14. doi: 10.1371/journal.pone.0137481 Google Scholar
  9. 9.
    Blake AW, Mccartney L, Flint JE et al (2006) Understanding the biological rationale for the diversity of cellulose-directed carbohydrate-binding modules in prokaryotic enzymes. J Biol Chem 281:29321–29329. doi: 10.1074/jbc.M605903200 CrossRefPubMedGoogle Scholar
  10. 10.
    Gasteiger E, Hoogland C, Gattiker A et al (2005) Protein identification and analysis tools on the ExPASy Server. In: Proteomics protocols handbook. Humana Press, Totowa, NJ, pp 571–607CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Haiyang Wu
    • 1
  • Cédric Y. Montanier
    • 1
  • Claire Dumon
    • 1
  1. 1.LISBPUniversité de Toulouse, CNRS, INRA, INSAToulouse Cedex 4France

Personalised recommendations