Skip to main content

Techniques to Investigate Bioenergetics of Mitochondria

  • Protocol
  • First Online:
Techniques to Investigate Mitochondrial Function in Neurons

Part of the book series: Neuromethods ((NM,volume 123))

  • 1731 Accesses

Abstract

In this chapter we review basic mitochondrial physiology as related to respiration, membrane potential, and ATP production and the relationship to ROS and calcium . Methods for measuring various functional parameters are described. Techniques differ according to whether one is assessing isolated mitochondria or intact cells. Although isolated mitochondria remain the only way to evaluate properties intrinsic to the organelles per se, mitochondrial function clearly is dependent on a multitude of cellular and whole body factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Scheffler I (1999) Mitochondrial electron transport and oxidative phosphorylation Mitochondria. Wiley-Liss, New York, NY, pp 141–245

    Google Scholar 

  2. Arechaga I, Ledesma A, Rial E (2001) The mitochondrial uncoupling protein UCP1: a gated pore. IUBMB Life 52(3–5):165–173

    Article  CAS  PubMed  Google Scholar 

  3. Wojtczak L, Zaluska H, Wroniszewska A, Wojtczak AB (1972) Assay for the intactness of the outer membrane in isolated mitochondria. Acta Biochim Pol 19(3):227–234

    CAS  PubMed  Google Scholar 

  4. Kim C, Patel P, Gouvin LM, Brown ML, Khalil A, Henchey EM et al (2014) Comparative analysis of the mitochondrial physiology of pancreatic beta cells. Bioenergetics 3(1):110

    PubMed  PubMed Central  Google Scholar 

  5. O'Malley Y, Fink BD, Ross NC, Prisinzano TE, Sivitz WI (2006) Reactive oxygen and targeted antioxidant administration in endothelial cell mitochondria. J Biol Chem 281(52):39766–39775

    Article  PubMed  Google Scholar 

  6. Chance B, Williams GR (1955) Respiratory enzymes in oxidative phosphorylation. III. The steady state. J Biol Chem 217(1):409–427

    CAS  PubMed  Google Scholar 

  7. Boudina S, Sena S, Theobald H, Sheng X, Wright JJ, Hu XX et al (2007) Mitochondrial energetics in the heart in obesity-related diabetes: direct evidence for increased uncoupled respiration and activation of uncoupling proteins. Diabetes 56(10):2457–2466

    Article  CAS  PubMed  Google Scholar 

  8. Brand MD, Nicholls DG (2011) Assessing mitochondrial dysfunction in cells. Biochem J 437(3):297–312

    Article  Google Scholar 

  9. Brawand F, Folly G, Walter P (1980) Relation between extra- and intramitochondrial ATP/ADP ratios in rat liver mitochondria. Biochim Biophys Acta 590(3):285–289

    Article  CAS  PubMed  Google Scholar 

  10. Walter P, Stucki JW (1970) Regulation of pyruvate carboxylase in rat liver mitochondria by adenine nucleotides and short chain fatty acids. Eur J Biochem 12(3):508–519

    Article  CAS  PubMed  Google Scholar 

  11. Wanders RJ, Groen AK, Van Roermund CW, Tager JM (1984) Factors determining the relative contribution of the adenine-nucleotide translocator and the ADP-regenerating system to the control of oxidative phosphorylation in isolated rat-liver mitochondria. Eur J Biochem 142(2):417–424

    Article  CAS  PubMed  Google Scholar 

  12. Davis EJ, Davis-van Thienen WI (1978) Control of mitochondrial metabolism by the ATP/ADP ratio. Biochem Biophys Res Commun 83(4):1260–1266

    Article  CAS  PubMed  Google Scholar 

  13. Davis EJ, Lumeng L, Bottoms D (1974) On the relationships between the stoichiometry of oxidative phosphorylation and the phosphorylation potential of rat liver mitochondria as functions of respiratory state. FEBS Lett 39(1):9–12

    Article  CAS  PubMed  Google Scholar 

  14. Davis EJ, Davis-Van Thienen WI (1984) Rate control of phosphorylation-coupled respiration by rat liver mitochondria. Arch Biochem Biophys 233(2):573–581

    Article  CAS  PubMed  Google Scholar 

  15. Kuster U, Bohnensack R, Kunz W (1976) Control of oxidative phosphorylation by the extra-mitochondrial ATP/ADP ratio. Biochim Biophys Acta 440(2):391–402

    Article  CAS  PubMed  Google Scholar 

  16. Yu L, Fink BD, Herlein JA, Sivitz WI (2013) Mitochondrial function in diabetes: novel methodology and new insight. Diabetes 62(6):1833–1842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bai F, Fink BD, Yu L, Sivitz WI (2016) Voltage-dependent regulation of complex II energized mitochondrial oxygen flux. PLoS One 11(5):e0154982

    Article  PubMed  PubMed Central  Google Scholar 

  18. Yu L, Fink BD, Herlein JA, Oltman CL, Lamping KG, Sivitz WI (2013) Dietary fat, fatty acid saturation and mitochondrial bioenergetics. J Bioenerg Biomembr 46(1):33–44

    Article  Google Scholar 

  19. Jekabsons MB, Nicholls DG (2004) In situ respiration and bioenergetic status of mitochondria in primary cerebellar granule neuronal cultures exposed continuously to glutamate. J Biol Chem 279(31):32989–33000

    Article  CAS  PubMed  Google Scholar 

  20. Fink BD, O'Malley Y, Dake BL, Ross NC, Prisinzano TE, Sivitz WI (2009) Mitochondrial targeted coenzyme Q, superoxide, and fuel selectivity in endothelial cells. PLoS One 4(1):e4250

    Article  PubMed  PubMed Central  Google Scholar 

  21. Nicholls DG, Johnson-Cadwell L, Vesce S, Jekabsons M, Yadava N, Johnson-Cadwell LI et al (2007) Bioenergetics of mitochondria in cultured neurons and their role in glutamate excitotoxicity ‘Mild Uncoupling’ does not decrease mitochondrial superoxide levels in cultured cerebellar granule neurons but decreases spare respiratory capacity and increases toxicity to glutamate and oxidative stress. J Neurosci Res 101(6):1619–1631

    Google Scholar 

  22. Ferrick DA, Neilson A, Beeson C (2008) Advances in measuring cellular bioenergetics using extracellular flux. Drug Discov Today 13(5–6):268–274

    Article  CAS  PubMed  Google Scholar 

  23. Fink BD, Herlein JA, Yorek MA, Fenner AM, Kerns RJ, Sivitz WI (2012) Bioenergetic effects of mitochondrial-targeted coenzyme Q analogs in endothelial cells. J Pharmacol Exp Ther 342(3):709–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wikstrom JD, Sereda SB, Stiles L, Elorza A, Allister EM, Neilson A et al (2012) A novel high-throughput assay for islet respiration reveals uncoupling of rodent and human islets. PLoS One 7(5):e33023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kamo N, Muratsugu M, Hongoh R, Kobatake Y (1979) Membrane potential of mitochondria measured with an electrode sensitive to tetraphenyl phosphonium and relationship between proton electrochemical potential and phosphorylation potential in steady state. J Membr Biol 49(2):105–121

    Article  CAS  PubMed  Google Scholar 

  26. Fink BD, Hong YS, Mathahs MM, Scholz TD, Dillon JS, Sivitz WI (2002) UCP2-dependent proton leak in isolated mammalian mitochondria. J Biol Chem 277(6):3918–3925

    Article  CAS  PubMed  Google Scholar 

  27. Nobes CD, Brown GC, Olive PN, Brand MD (1990) Non-ohmic proton conductance of the mitochondrial inner membrane in hepatocytes. J Biol Chem 265(22):12903–12909

    CAS  PubMed  Google Scholar 

  28. Perry SW, Norman JP, Barbieri J, Brown EB, Gelbard HA (2011) Mitochondrial membrane potential probes and the proton gradient: a practical usage guide. Biotechniques 50(2):98–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nicholls DG, Ward MW (2000) Mitochondrial membrane potential and neuronal glutamate excitotoxicity: mortality and millivolts. Trends Neurosci 23(4):166–174

    Article  CAS  PubMed  Google Scholar 

  30. Takahashi A, Zhang Y, Centonze E, Herman B (2001) Measurement of mitochondrial pH in situ. BioTechniques 30(4):804–8, 10, 12 passim

    Google Scholar 

  31. Lambert AJ, Brand MD (2004) Superoxide production by NADH:ubiquinone oxidoreductase (complex I) depends on the pH gradient across the mitochondrial inner membrane. Biochem J 382(Pt 2):511–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mitchell P (1961) Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 191:144–148

    Article  CAS  PubMed  Google Scholar 

  33. Brand MD, Chien LF, Ainscow EK, Rolfe DF, Porter RK (1994) The causes and functions of mitochondrial proton leak. Biochim Biophys Acta 1187(2):132–139

    Article  CAS  PubMed  Google Scholar 

  34. Fink BD, Herlein JA, Almind K, Cinti S, Kahn CR, Sivitz WI (2007) The mitochondrial proton leak in obesity-resistant and obesity-prone mice. Am J Physiol Regul Integr Comp Physiol 293:R1773–R1780

    Article  CAS  PubMed  Google Scholar 

  35. Manfredi G, Spinazzola A, Checcarelli N, Naini A (2001) Assay of mitochondrial ATP synthesis in animal cells. Methods Cell Biol 65:133–145

    Article  CAS  PubMed  Google Scholar 

  36. Yu L, Fink BD, Sivitz WI (2015) Simultaneous quantification of mitochondrial ATP and ROS production. Methods Mol Biol 1264:149–159

    Article  CAS  PubMed  Google Scholar 

  37. Brand MD (2010) The sites and topology of mitochondrial superoxide production. Exp Gerontol 45(7–8):466–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Boss O, Hagen T, Lowell BB (2000) Uncoupling proteins 2 and 3: potential regulators of mitochondrial energy metabolism. Diabetes 49(2):143–156

    Article  CAS  PubMed  Google Scholar 

  39. Fink BD, Reszka KJ, Herlein JA, Mathahs MM, Sivitz WI (2005) Respiratory uncoupling by UCP1 and UCP2 and superoxide generation in endothelial cell mitochondria. Am J Physiol Endocrinol Metab 288(1):E71–E79

    Article  CAS  PubMed  Google Scholar 

  40. St-Pierre J, Buckingham JA, Roebuck SJ, Brand MD (2002) Topology of superoxide production from different sites in the mitochondrial electron transport chain. J Biol Chem 4277:44784–44790

    Article  Google Scholar 

  41. Murphy MP (1997) Selective targeting of bioactive compounds to mitochondria. Trends Biotechnol 15(8):326–330

    Article  CAS  PubMed  Google Scholar 

  42. Laurindo FR, Fernandes DC, Santos CX (2008) Assessment of superoxide production and NADPH oxidase activity by HPLC analysis of dihydroethidium oxidation products. Methods Enzymol 441:237–260

    Article  CAS  PubMed  Google Scholar 

  43. Petrat F, Pindiur S, Kirsch M, de Groot H (2003) NAD(P)H, a primary target of 1O2 in mitochondria of intact cells. J Biol Chem 278(5):3298–3307

    Article  CAS  PubMed  Google Scholar 

  44. Piconi L, Quagliaro L, Ceriello A (2003) Oxidative stress in diabetes. Clin Chem Lab Med 41(9):1144–1149

    Article  CAS  PubMed  Google Scholar 

  45. Mezzetti A, Cipollone F, Cuccurullo F (2000) Oxidative stress and cardiovascular complications in diabetes: isoprostanes as new markers on an old paradigm. Cardiovasc Res 47(3):475–488

    Article  CAS  PubMed  Google Scholar 

  46. Mercuri F, Quagliaro L, Ceriello A (2000) Oxidative stress evaluation in diabetes. Diabetes Technol Ther 2(4):589–600

    Article  CAS  PubMed  Google Scholar 

  47. Gardner PR (1997) Superoxide-driven aconitase FE-S center cycling. Biosci Rep 17(1):33–42

    Article  CAS  PubMed  Google Scholar 

  48. Glancy B, Willis WT, Chess DJ, Balaban RS (2013) Effect of calcium on the oxidative phosphorylation cascade in skeletal muscle mitochondria. Biochemistry 52(16):2793–2809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Siemen D, Ziemer M (2013) What is the nature of the mitochondrial permeability transition pore and what is it not? IUBMB Life 65(3):255–262

    Article  CAS  PubMed  Google Scholar 

  50. Bernardi P. The mitochondrial permeability transition pore: a mystery solved? Front Physiol 2013;4:95

    Google Scholar 

  51. Bers DM (1982) A simple method for the accurate determination of free [Ca] in Ca-EGTA solutions. Am J Physiol 242(5):C404–C408

    CAS  PubMed  Google Scholar 

  52. Dweck D, Reyes-Alfonso A Jr, Potter JD (2005) Expanding the range of free calcium regulation in biological solutions. Anal Biochem 347(2):303–315

    Article  CAS  PubMed  Google Scholar 

  53. Patergnani S, Suski JM, Agnoletto C, Bononi A, Bonora M, De Marchi E et al (2011) Calcium signaling around Mitochondria Associated Membranes (MAMs). Cell Commun Signal 9(1):19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. De Stefani D, Raffaello A, Teardo E, Szabo I, Rizzuto R (2011) A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature 476(7360):336–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Miyazaki K, Ross WN (2013) Ca2+ parks and puffs are generated and interact in rat hippocampal CA1 pyramidal neuron dendrites. J Neurosci 33(45):17777–17788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. O-U J, Pan S, Sheu SS (2012) Perspectives on: SGP symposium on mitochondrial physiology and medicine: molecular identities of mitochondrial Ca2+ influx mechanism: updated passwords for accessing mitochondrial Ca2+-linked health and disease. J Gen Physiol 139(6):435–443

    Article  Google Scholar 

  57. Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6(3):277–293

    Article  CAS  PubMed  Google Scholar 

  58. Johnson BA, Blevins RA (1994) NMR view: a computer program for the visualization and analysis of NMR data. J Biomol NMR 4(5):603–614

    Article  CAS  PubMed  Google Scholar 

  59. Hovius R, Lambrechts H, Nicolay K, de Kruijff B (1990) Improved methods to isolate and subfractionate rat liver mitochondria. Lipid composition of the inner and outer membrane. Biochim Biophys Acta 1021(2):217–226

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William I. Sivitz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Sivitz, W.I. (2017). Techniques to Investigate Bioenergetics of Mitochondria. In: Strack, S., Usachev, Y. (eds) Techniques to Investigate Mitochondrial Function in Neurons. Neuromethods, vol 123. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6890-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6890-9_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6888-6

  • Online ISBN: 978-1-4939-6890-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics