Advertisement

Measuring Mitochondrial Shape with ImageJ

Protocol
Part of the Neuromethods book series (NM, volume 123)

Abstract

Mitochondria are shaped by opposing fission (division) and fusion events. Mounting evidence indicates that mitochondrial shape influences numerous aspects of mitochondrial function, including ATP production, Ca2+ buffering, and quality control. Despite the recognized importance of mitochondrial dynamics, the literature is rife with subjective, categorical estimates of mitochondrial morphology, preventing reliable comparison of results between groups. This chapter describes stringent, but easily implemented methods for quantification of mitochondrial shape changes using the open-source software package ImageJ. While we provide examples for analysis of epifluorescence images of cultured primary neurons, these methods are easily generalized to other cell types and imaging techniques.

Key words

ImageJ Fiji Microscopy Mitochondrial fission/fusion Morphometry Digital image analysis 

Notes

Acknowledgments

This work is currently supported by NIH grants NS056244 and NS087908 to S.S. We thank past and present members of the laboratory for providing critical feedback for development of the methods described in this chapter.

References

  1. 1.
    Popov V, Medvedev NI, Davies HA, Stewart MG (2005) Mitochondria form a filamentous reticular network in hippocampal dendrites but are present as discrete bodies in axons: a three-dimensional ultrastructural study. J Comp Neurol 492(1):50–65. doi: 10.1002/cne.20682 CrossRefPubMedGoogle Scholar
  2. 2.
    De Stefani D, Rizzuto R, Pozzan T (2016) Enjoy the trip: calcium in mitochondria back and forth. Annu Rev Biochem. doi: 10.1146/annurev-biochem-060614-034216 PubMedGoogle Scholar
  3. 3.
    Bertholet AM, Delerue T, Millet AM, Moulis MF, David C, Daloyau M, Arnaune-Pelloquin L, Davezac N, Mils V, Miquel MC, Rojo M, Belenguer P (2016) Mitochondrial fusion/fission dynamics in neurodegeneration and neuronal plasticity. Neurobiol Dis 90:3–19. doi: 10.1016/j.nbd.2015.10.011 CrossRefPubMedGoogle Scholar
  4. 4.
    Alexander C, Votruba M, Pesch UE, Thiselton DL, Mayer S, Moore A, Rodriguez M, Kellner U, Leo-Kottler B, Auburger G, Bhattacharya SS, Wissinger B (2000) OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28. Nat Genet 26(2):211–215CrossRefPubMedGoogle Scholar
  5. 5.
    Zuchner S, Mersiyanova IV, Muglia M, Bissar-Tadmouri N, Rochelle J, Dadali EL, Zappia M, Nelis E, Patitucci A, Senderek J, Parman Y, Evgrafov O, Jonghe PD, Takahashi Y, Tsuji S, Pericak-Vance MA, Quattrone A, Battaloglu E, Polyakov AV, Timmerman V, Schroder JM, Vance JM (2004) Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A. Nat Genet 36(5):449–451CrossRefPubMedGoogle Scholar
  6. 6.
    Waterham HR, Koster J, van Roermund CW, Mooyer PA, Wanders RJ, Leonard JV (2007) A lethal defect of mitochondrial and peroxisomal fission. N Engl J Med 356(17):1736–1741CrossRefPubMedGoogle Scholar
  7. 7.
    Sheffer R, Douiev L, Edvardson S, Shaag A, Tamimi K, Soiferman D, Meiner V, Saada A (2016) Postnatal microcephaly and pain insensitivity due to a de novo heterozygous DNM1L mutation causing impaired mitochondrial fission and function. Am J Med Genet A. doi: 10.1002/ajmg.a.37624 PubMedGoogle Scholar
  8. 8.
    Koch J, Feichtinger RG, Freisinger P, Pies M, Schrodl F, Iuso A, Sperl W, Mayr JA, Prokisch H, Haack TB (2016) Disturbed mitochondrial and peroxisomal dynamics due to loss of MFF causes Leigh-like encephalopathy, optic atrophy and peripheral neuropathy. J Med Genet 53(4):270–278. doi: 10.1136/jmedgenet-2015-103500 CrossRefPubMedGoogle Scholar
  9. 9.
    Shamseldin HE, Alshammari M, Al-Sheddi T, Salih MA, Alkhalidi H, Kentab A, Repetto GM, Hashem M, Alkuraya FS (2012) Genomic analysis of mitochondrial diseases in a consanguineous population reveals novel candidate disease genes. J Med Genet 49(4):234–241. doi: 10.1136/jmedgenet-2012-100836 CrossRefPubMedGoogle Scholar
  10. 10.
    Fahrner JA, Liu R, Perry MS, Klein J, Chan DC (2016) A novel de novo dominant negative mutation in DNM1L impairs mitochondrial fission and presents as childhood epileptic encephalopathy. Am J Med Genet A. doi: 10.1002/ajmg.a.37721 PubMedGoogle Scholar
  11. 11.
    Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675CrossRefPubMedGoogle Scholar
  12. 12.
    Lim IA, Merrill MA, Chen Y, Hell JW (2003) Disruption of the NMDA receptor-PSD-95 interaction in hippocampal neurons with no obvious physiological short-term effect. Neuropharmacology 45(6):738–754CrossRefPubMedGoogle Scholar
  13. 13.
    Sternberger SR (1983) Biomedical image processing. IEEE Comput 18:22–34CrossRefGoogle Scholar
  14. 14.
    Frangi AF, Niessen WJ, Vincken KL, Viergever MA (1998) Multiscale vessel enhancement filtering. In: Wells WM, Colchester A, Delp SL (eds) Medical image computing and computer-assisted intervention, Lecture notes in computer sciences, vol 1496. Springer, Berlin, pp 130–137Google Scholar
  15. 15.
    Sato Y, Nakajima S, Shiraga N, Atsumi H, Yoshida S, Koller T, Gerig G, Kikinis R (1998) Three-dimensional multi-scale line filter for segmentation and visualization of curvilinear structures in medical images. Med Image Anal 2(2):143–168CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Department of PharmacologyUniversity of Iowa Carver College of MedicineIowa CityUSA

Personalised recommendations