Skip to main content

Measuring Mitochondrial Pyruvate Oxidation

  • Protocol
  • First Online:
  • 1720 Accesses

Part of the book series: Neuromethods ((NM,volume 123))

Abstract

Pyruvate is a central metabolic intermediate and plays a prominent role in nervous system function. Neurons are highly reliant on pyruvate oxidation for maintenance of cellular energetics. Disorders in pyruvate metabolism may result in severe neurological defects. Pyruvate is imported into the mitochondrial matrix by the mitochondrial pyruvate carrier (MPC) for oxidation by the TCA cycle to support oxidative phosphorylation. Understanding the function of the MPC requires specialized methods for investigating mitochondrial pyruvate metabolism. Multiple instruments are available for measuring respiration of animal tissues, intact cells, permeabilized cells and tissue, and isolated mitochondria. Compared to other platforms, the comparative advantage of the Seahorse extracellular flux analyzer is the ability to sequentially administer treatment compounds and observe the effects on cellular respiration in a multiplexed 96-well format. Here we describe the methods and procedures for: (1) assessing mitochondrial pyruvate oxidation by intact cultured neuronal cells; (2) by mitochondria isolated from HEK293T cells, and (3) by mitochondria isolated from mouse liver, which are useful as a general model of mitochondrial function.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Gray LR, Tompkins SC, Taylor EB (2014) Regulation of pyruvate metabolism and human disease. Cell Mol Life Sci 71(14):2577–2604. doi:10.1007/s00018-013-1539-2

    Article  CAS  PubMed  Google Scholar 

  2. Pellerin L, Magistretti PJ (2012) Sweet sixteen for ANLS. J Cereb Blood Flow Metab 32(7):1152–1166. doi:10.1038/jcbfm.2011.149

    Article  CAS  PubMed  Google Scholar 

  3. Bricker DK, Taylor EB, Schell JC, Orsak T, Boutron A, Chen YC, Cox JE, Cardon CM, Van Vranken JG, Dephoure N, Redin C, Boudina S, Gygi SP, Brivet M, Thummel CS, Rutter J (2012) A mitochondrial pyruvate carrier required for pyruvate uptake in yeast, Drosophila, and humans. Science 337(6090):96–100. doi:10.1126/science.1218099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Herzig S, Raemy E, Montessuit S, Veuthey JL, Zamboni N, Westermann B, Kunji ER, Martinou JC (2012) Identification and functional expression of the mitochondrial pyruvate carrier. Science 337(6090):93–96. doi:10.1126/science.1218530

    Article  CAS  PubMed  Google Scholar 

  5. Brivet M, Garcia-Cazorla A, Lyonnet S, Dumez Y, Nassogne MC, Slama A, Boutron A, Touati G, Legrand A, Saudubray JM (2003) Impaired mitochondrial pyruvate importation in a patient and a fetus at risk. Mol Genet Metab 78(3):186–192

    Article  CAS  PubMed  Google Scholar 

  6. Gray LR, Sultana MR, Rauckhorst AJ, Oonthonpan L, Tompkins SC, Sharma A, Fu X, Miao R, Pewa AD, Brown KS, Lane EE, Dohlman A, Zepeda-Orozco D, Xie J, Rutter J, Norris AW, Cox JE, Burgess SC, Potthoff MJ, Taylor EB (2015) Hepatic mitochondrial pyruvate carrier 1 is required for efficient regulation of gluconeogenesis and whole-body glucose homeostasis. Cell Metab 22(4):669–681. doi:10.1016/j.cmet.2015.07.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. McCommis KS, Chen Z, Fu X, McDonald WG, Colca JR, Kletzien RF, Burgess SC, Finck BN (2015) Loss of mitochondrial pyruvate carrier 2 in the liver leads to defects in gluconeogenesis and compensation via pyruvate-alanine cycling. Cell Metab 22(4):682–694. doi:10.1016/j.cmet.2015.07.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Schell JC, Olson KA, Jiang L, Hawkins AJ, Van Vranken JG, Xie J, Egnatchik RA, Earl EG, DeBerardinis RJ, Rutter J (2014) A role for the mitochondrial pyruvate carrier as a repressor of the Warburg effect and colon cancer cell growth. Mol Cell 56(3):400–413. doi:10.1016/j.molcel.2014.09.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Vigueira PA, McCommis KS, Schweitzer GG, Remedi MS, Chambers KT, Fu X, McDonald WG, Cole SL, Colca JR, Kletzien RF, Burgess SC, Finck BN (2014) Mitochondrial pyruvate carrier 2 hypomorphism in mice leads to defects in glucose-stimulated insulin secretion. Cell Rep 7(6):2042–2053. doi:10.1016/j.celrep.2014.05.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yang C, Ko B, Hensley CT, Jiang L, Wasti AT, Kim J, Sudderth J, Calvaruso MA, Lumata L, Mitsche M, Rutter J, Merritt ME, DeBerardinis RJ (2014) Glutamine oxidation maintains the TCA cycle and cell survival during impaired mitochondrial pyruvate transport. Mol Cell 56(3):414–424. doi:10.1016/j.molcel.2014.09.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mellon PL, Windle JJ, Goldsmith PC, Padula CA, Roberts JL, Weiner RI (1990) Immortalization of hypothalamic GnRH neurons by genetically targeted tumorigenesis. Neuron 5(1):1–10

    Article  CAS  PubMed  Google Scholar 

  12. Stepanenko AA, Dmitrenko VV (2015) HEK293 in cell biology and cancer research: phenotype, karyotype, tumorigenicity, and stress-induced genome-phenotype evolution. Gene 569(2):182–190. doi:10.1016/j.gene.2015.05.065

    Article  CAS  PubMed  Google Scholar 

  13. Fu Z, Washbourne P, Ortinski P, Vicini S (2003) Functional excitatory synapses in HEK293 cells expressing neuroligin and glutamate receptors. J Neurophysiol 90(6):3950–3957. doi:10.1152/jn.00647.2003

    Article  CAS  PubMed  Google Scholar 

  14. Li Z, Graham BH (2012) Measurement of mitochondrial oxygen consumption using a Clark electrode. Methods Mol Biol 837:63–72. doi:10.1007/978-1-61779-504-6_5

    Article  CAS  PubMed  Google Scholar 

  15. Silva AM, Oliveira PJ (2012) Evaluation of respiration with clark type electrode in isolated mitochondria and permeabilized animal cells. Methods Mol Biol 810:7–24. doi:10.1007/978-1-61779-382-0_2

    Article  CAS  PubMed  Google Scholar 

  16. Oroboros Instruments. http://wiki.oroboros.at/index.php/OROBOROS_home. Accessed 28 Dec 2015

  17. Seahorse Bioscience. http://www.seahorsebio.com/. Accessed 28 Dec 2015

  18. Gerhold JM, Cansiz-Arda S, Lohmus M, Engberg O, Reyes A, van Rennes H, Sanz A, Holt IJ, Cooper HM, Spelbrink JN (2015) Human mitochondrial DNA-Protein complexes attach to a cholesterol-rich membrane structure. Sci Rep 5:15292. doi:10.1038/srep15292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rogers GW, Brand MD, Petrosyan S, Ashok D, Elorza AA, Ferrick DA, Murphy AN (2011) High throughput microplate respiratory measurements using minimal quantities of isolated mitochondria. PLoS One 6(7):e21746. doi:10.1371/journal.pone.0021746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72 (1):248–254. doi: 10.1016/0003-2697(76)90527-3

    Google Scholar 

  21. Gnaiger E (2012) Mitochondrial pathways and respiratory control. An introduciton to OXPHOS analysis, 3rd edn. OROBOROS MiPNet Publications, Innsbruck. http://www.oroboros.at/?MiPNet-protocols

Download references

Acknowledgments

We would like to thank Brett Wagner and the Radiation and Free Radical Research Core Facility for assistance performing the experiments utilizing the Seahorse Bioscience XF96. This research was supported by NIH grants R01 DK104998 (E.B.T.); R00 AR059190 (E.B.T.); F32 DK101183 (L.R.G.); T32 HL007121 to Francois Abboud (L.R.G.); T32 HL007638 to Michael Welsh (A.J.R.); and P30CA086862 to George Weiner, which contributed to support of core facilities utilized for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric B. Taylor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Gray, L.R., Rouault, A.A.J., Oonthonpan, L., Rauckhorst, A.J., Sebag, J.A., Taylor, E.B. (2017). Measuring Mitochondrial Pyruvate Oxidation. In: Strack, S., Usachev, Y. (eds) Techniques to Investigate Mitochondrial Function in Neurons. Neuromethods, vol 123. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6890-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6890-9_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6888-6

  • Online ISBN: 978-1-4939-6890-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics