How to Determine Interdependencies of Glucose and Lactose Uptake Rates for Heterologous Protein Production with E. coli

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1586)

Abstract

Induction by lactose is known to have a beneficial effect on the expression of soluble recombinant proteins in E. coli harboring the T7 expression system (e.g., E. coli BL21(DE3)). As lactose is a metabolizable inducer, it needs to be supplied continuously to prevent depletion and thus only partial induction. Overfeeding and accumulation of lactose or glucose on the other hand can lead to osmotic stress. Thus, it is of utmost importance to know the possible feeding ranges. Here, we show a fast method using a simple mechanistic model to characterize E. coli strains harboring the T7 expression system regarding their ability to take up lactose and glucose. This approach reduces experimental work and the gained data allows running a stable and robust bioprocess without accumulation of lactose or glucose.

Key words

Escherichia coli BL21(DE3) pET expression system Lactose induction Specific lactose uptake rate Mechanistic model Recombinant protein production 

References

  1. 1.
    Rosano GL, Ceccarelli EA (2014) Recombinant protein expression in Escherichia coli: advances and challenges. Front Microbiol 5:172PubMedPubMedCentralGoogle Scholar
  2. 2.
    Studier FW, Moffatt BA (1986) Use of bacteriophage-T7 Rna-polymerase to direct selective high-level expression of cloned genes. J Mol Biol 189:113–130CrossRefPubMedGoogle Scholar
  3. 3.
    Baneyx F (1999) Recombinant protein expression in Escherichia coli. Curr Opin Biotechnol 10:411–421CrossRefPubMedGoogle Scholar
  4. 4.
    Neubauer P, Hofmann K (1994) Efficient use of lactose for the lac promotercontrolled overexpression of the main antigenic protein of the foot and mouth disease virus in Escherichia coli under fed-batch fermentation conditions. FEMS Microbiol Rev 14:99–102CrossRefPubMedGoogle Scholar
  5. 5.
    Neubauer P, Hofmann K, Holst O et al (1992) Maximizing the expression of a recombinant gene in Escherichia coli by manipulation of induction time using lactose as inducer. Appl Microbiol Biotechnol 36:739–744Google Scholar
  6. 6.
    Pei XL, Wang QY, Li CL et al (2011) Efficient production of a thermophilic 2-deoxyribose-5-phosphate aldolase in glucose-limited fed-batch cultivations of Escherichia coli by continuous lactose induction strategy. Appl Biochem Biotechnol 165:416–425CrossRefPubMedGoogle Scholar
  7. 7.
    Gombert AK, Kilikian BV (1998) Recombinant gene expression in Escherichia coli cultivation using lactose as inducer. J Biotechnol 60:47–54CrossRefPubMedGoogle Scholar
  8. 8.
    Zou C, Duan X, Wu J (2014) Enhanced extracellular production of recombinant Bacillus deramificans pullulanase in Escherichia coli through induction mode optimization and a glycine feeding strategy. Bioresour Technol 172:174–179CrossRefPubMedGoogle Scholar
  9. 9.
    Bashir H, Ahmed N, Khan MA, Zafar AU, Tahir S, Khan MI, Khan F, Husnain T (2016) Simple procedure applying lactose induction and one-step purification for high-yield production of rhCIFN. Biotechnol Appl Biochem 63(5):708–714. doi: 10.1002/bab.1426
  10. 10.
    Fruchtl M, Sakon J, Beitle R (2015) Expression of a collagen-binding domain fusion protein: effect of amino acid supplementation, inducer type, and culture conditions. Biotechnol Prog 31:503–509CrossRefPubMedGoogle Scholar
  11. 11.
    Striedner G, Cserjan-Puschmann M, Potschacher F et al (2003) Tuning the transcription rate of recombinant protein in strong Escherichia coli expression systems through repressor titration. Biotechnol Prog 19:1427–1432CrossRefPubMedGoogle Scholar
  12. 12.
    Shiloach J, Fass R (2005) Growing E. coli to high cell density—a historical perspective on method development. Biotechnol Adv 23:345–357CrossRefPubMedGoogle Scholar
  13. 13.
    Wurm DJ, Veiter L, Ulonska S, Eggenreich B, Herwig C, Spadiut O (2016) The E. coli pET expression system revisited-mechanistic correlation between glucose and lactose uptake. Appl Microbiol Biotechnol 100 (20):8721–8729. doi: 10.1007/s00253-016-7620-7
  14. 14.
    DeLisa MP, Li JC, Rao G et al (1999) Monitoring GFP-operon fusion protein expression during high cell density cultivation of Escherichia coli using an on-line optical sensor. Biotechnol Bioeng 65:54–64CrossRefPubMedGoogle Scholar
  15. 15.
    Lagarias JC, Reeds JA, Wright MH et al (1998) Convergence properties of the Nelder-Mead simplex method in low dimensions. SIAM J Optimiz 9:112–147CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • David J. Wurm
    • 1
  • Christoph Herwig
    • 1
    • 2
  • Oliver Spadiut
    • 1
    • 2
  1. 1.Research Division Biochemical Engineering, Institute of Chemical EngineeringTU WienViennaAustria
  2. 2.Christian Doppler Laboratory for Mechanistic and Physiological Methods for Improved BioprocessesInstitute of Chemical EngineeringWien, ViennaAustria

Personalised recommendations