Not Limited to E. coli: Versatile Expression Vectors for Mammalian Protein Expression

  • Katharina Karste
  • Maren Bleckmann
  • Joop van den Heuvel
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1586)

Abstract

Recombinant protein expression is not limited to E. coli or other prokaryotic systems. It is inevitable to use eukaryotic systems in order to express challenging mammalian proteins. Eukaryotic systems are able to perform complex posttranslational modifications like protein processing, phosphorylation, glycosylation, which are essential for stability and functionality of many proteins. Different eukaryotic protein expression systems employing yeast, insect, or mammalian cell lines are established with each having its own advantages and disadvantages. Often it is quite difficult to decide which will be the most optimal expression system as this depends highly on the protein itself. Expression in stable cell lines requires substantial screening of expressible constructs prior to developing a stable expression cell line. To achieve fast screening by transient expression in multiple hosts, versatile vectors can be applied. In this chapter, we present an overview of the most common multi-host vectors, which allow for fast expression analysis without tedious (re)cloning of the gene of interest in several different protein production systems. The protocols in this chapter describe the latest methods for fast transient expression in insect and mammalian cell lines.

Key words

Versatile vectors Transient expression HEK293-6E Hi5 Expression vector 

Notes

Acknowledgments

Katharina Karste and Maren Bleckmann are equally contributing authors. We thank Nadine Konisch, Anke Samuels and Daniela Gebauer for their excellent technical support during the experiments. This work was supported by the Helmholtz Protein Sample Production Facility and by Instruct, part of the European Strategy Forum on Research Infrastructures (ESFRI).

References

  1. 1.
    Meyer S, Lorenz C, Baser B et al (2013) Multi-host expression system for recombinant production of challenging proteins. PLoS One 8:e68674CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Hochkoeppler A (2013) Expanding the landscape of recombinant protein production in Escherichia coli. Biotechnol Lett 35:1971–1981CrossRefPubMedGoogle Scholar
  3. 3.
    Willett RA, Kudlyk TA, Lupashin VV (2015) Expression of functional Myc-tagged conserved oligomeric Golgi (COG) subcomplexes in mammalian cells. Methods Mol Biol 1270:167–177CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Engler C, Marillonnet S (2014) Golden Gate cloning. Methods Mol Biol 1116:119–131CrossRefPubMedGoogle Scholar
  5. 5.
    Li MZ, Elledge SJ (2012) SLIC: a method for sequence- and ligation-independent cloning. Methods Mol Biol 852:51–59CrossRefPubMedGoogle Scholar
  6. 6.
    Laitinen OH, Airenne KJ, Hytönen VP et al (2005) A multipurpose vector system for the screening of libraries in bacteria, insect and mammalian cells and expression in vivo. Nucleic Acids Res 33:e42CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Braun P, LaBaer J (2003) High throughput protein production for functional proteomics. Trends Biotechnol 21:383–388CrossRefPubMedGoogle Scholar
  8. 8.
    Swiech K, Kamen A, Ansorge S et al (2011) Transient transfection of serum-free suspension HEK 293 cell culture for efficient production of human rFVIII. BMC Biotechnol 11:114CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Shen X, Pitol AK, Bachmann V et al (2015) A simple plasmid-based transient gene expression method using High Five cells. J Biotechnol 216:67–75CrossRefPubMedGoogle Scholar
  10. 10.
    Shine J, Dalgarno L (1974) The 3′-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. Proc Natl Acad Sci U S A 71:1342–1346CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Kozak M (1986) Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell 44:283–292CrossRefPubMedGoogle Scholar
  12. 12.
    Mullinax RL, Wong DT, Davis HA et al (2000) Expression in both E. coli and mammalian cells. Strategies 13:41–43Google Scholar
  13. 13.
    Davis HA, Wong DT, Padgett KA et al (2000) High-level dual mammalian and bacterial protein expression vector | biocompare: the buyer’s guide for life scientists [Internet]. Available: http://www.biocompare.com/Application-Notes/42069-High-Level-Dual-Mammalian-And-Bacterial-Protein-Expression-Vector/
  14. 14.
    Padgett KA, Sorge JA (1996) Creating seamless junctions independent of restriction sites in PCR cloning. Gene 168:31–35CrossRefPubMedGoogle Scholar
  15. 15.
    Matsuyama A, Shirai A, Yashiroda Y et al (2004) pDUAL, a multipurpose, multicopy vector capable of chromosomal integration in fission yeast. Yeast 21:1289–1305CrossRefPubMedGoogle Scholar
  16. 16.
    Forman BM, Samuels HH (1991) pEXPRESS: a family of expression vectors containing a single transcription unit active in prokaryotes, eukaryotes and in vitro. Gene 105:9–15CrossRefPubMedGoogle Scholar
  17. 17.
    Durocher Y, Butler M (2009) Expression systems for therapeutic glycoprotein production. Curr Opin Biotechnol 20:700–707CrossRefPubMedGoogle Scholar
  18. 18.
    Jäger V, Büssow K, Wagner A et al (2013) High level transient production of recombinant antibodies and antibody fusion proteins in HEK293 cells. BMC Biotechnol 13:52CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Schlake T, Bode J (1994) Use of mutated FLP recognition target (FRT) sites for the exchange of expression cassettes at defined chromosomal loci. Biochemistry (Mosc) 33:12746–12751CrossRefGoogle Scholar
  20. 20.
    Wilke S, Groebe L, Maffenbeier V et al (2011) Streamlining homogeneous glycoprotein production for biophysical and structural applications by targeted cell line development. PLoS One 6:e27829CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Bleckmann M, Schürig M, Chen F-F et al (2016) Identification of essential genetic baculoviral elements for recombinant protein expression by transactivation in Sf21 insect cells. PLoS One 11:e0149424CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Bleckmann M, Fritz MH-Y, Bhuju S et al (2015) Genomic analysis and isolation of RNA polymerase II dependent promoters from Spodoptera frugiperda. PLoS One 10:e0132898CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Bleckmann M, Schmelz S, Schinkowski C et al (2016) Fast plasmid based protein expression analysis in insect cells using an automated SplitGFP screen. Biotechnol Bioeng 9999:1Google Scholar
  24. 24.
    Airenne KJ (2003) Improved generation of recombinant baculovirus genomes in Escherichia coli. Nucleic Acids Res 31:101e–101Google Scholar
  25. 25.
    Lehtolainen P, Tyynelä K, Kannasto J et al (2002) Baculoviruses exhibit restricted cell type specificity in rat brain: a comparison of baculovirus- and adenovirus-mediated intracerebral gene transfer in vivo. Gene Ther 9:1693–1699CrossRefPubMedGoogle Scholar
  26. 26.
    Berrow NS, Alderton D, Sainsbury S et al (2007) A versatile ligation-independent cloning method suitable for high-throughput expression screening applications. Nucleic Acids Res 35:e45CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    González-Sánchez C, González-Quesada M, de la Orden MU et al (2008) Comparison of the effects of polyethylenimine and maleated polypropylene coupling agents on the properties of cellulose-reinforced polypropylene composites. J Appl Polym Sci 110:2555–2562CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Katharina Karste
    • 1
  • Maren Bleckmann
    • 1
  • Joop van den Heuvel
    • 1
  1. 1.Helmholtz Zentrum für Infektionsforschung GmbHBraunschweigGermany

Personalised recommendations