Multiprotein Complex Production in E. coli: The SecYEG-SecDFYajC-YidC Holotranslocon

  • Imre Berger
  • Quiyang Jiang
  • Ryan J. Schulze
  • Ian Collinson
  • Christiane Schaffitzel
Part of the Methods in Molecular Biology book series (MIMB, volume 1586)


A modular approach for balanced overexpression of recombinant multiprotein complexes in E. coli is described, with the prokaryotic protein secretase/insertase complex, the SecYEG-SecDFYajC-YidC holotranslocon (HTL), used as an example. This procedure has been implemented here in the ACEMBL system. The protocol details the design principles of the monocistronic or polycistronic DNA constructs, the expression and purification of functional HTL and its association with translating ribosome nascent chain (RNC) complexes into a RNC-HTL supercomplex.

Key words

Multiprotein complexes Membrane proteins Protein insertion and secretion Holotranslocon HTL ACEMBL system Cre recombinase Donor–acceptor fusion Subunit stoichiometry Ribosome nascent chain complex RNC 



We thank all members of the Berger, Schaffitzel, and Collinson laboratories for helpful discussions. The authors thank Sir John Walker for the E. coli C43 expression strain. J.K. was supported by a doctoral training grant from the BBSRC. C.S. is supported by a European Research Council ERC Starting Grant Award. I.C. acknowledges support by the BBSRC (Project Grants BB/M003604/1 and BB/I008675/1) and is recipient of a Wellcome Trust Senior Investigator Award. I.B. acknowledges support from the European Commission Framework Programme 7 ComplexINC project (contract no. 279039).


  1. 1.
    Arkowitz RA, Wickner W (1994) SecD and SecF are required for the proton electrochemical gradient stimulation of preprotein translocation. EMBO J 13:954–963PubMedPubMedCentralGoogle Scholar
  2. 2.
    Beck K, Eisner G, Trescher D et al (2001) YidC, an assembly site for polytopic Escherichia coli membrane proteins located in immediate proximity to the SecYE translocon and lipids. EMBO Rep 2:709–714CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Duong F, Wickner W (1997) The SecDFyajC domain of preprotein translocase controls preprotein movement by regulating SecA membrane cycling. EMBO J 16:4871–4879CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Scotti PA, Urbanus ML, Brunner J et al (2000) YidC, the Escherichia coli homologue of mitochondrial Oxa1p, is a component of the Sec translocase. EMBO J 19:542–549CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Duong F, Wickner W (1997) Distinct catalytic roles of the SecYE, SecG and SecDFyajC subunits of preprotein translocase holoenzyme. EMBO J 16:2756–2768CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Nettleship JE, Assenberg R, Diprose JM et al (2010) Recent advances in the production of proteins in insect and mammalian cells for structural biology. J Struct Biol 172:55–65CrossRefPubMedGoogle Scholar
  7. 7.
    Bieniossek C, Imasaki T, Takagi Y et al (2012) MultiBac: expanding the research toolbox for multiprotein complexes. Trends Biochem Sci 37:49–57CrossRefPubMedGoogle Scholar
  8. 8.
    Nettleship JE, Watson PJ, Rahman-Huq N et al (2015) Transient expression in HEK 293 cells: an alternative to E. coli for the production of secreted and intracellular mammalian proteins. Methods Mol Biol 1258:209–222CrossRefPubMedGoogle Scholar
  9. 9.
    Van Oers MM, Pijlman GP, Vlak JM (2015) Thirty years of baculovirus-insect cell protein expression: from dark horse to mainstream technology. J Gen Virol 96:6–23CrossRefPubMedGoogle Scholar
  10. 10.
    Kodadek T (2008) Rise of the machines: Bruce Alberts and the biochemistry of multi-protein complexes. Mol Biosyst 4:1043–1045CrossRefPubMedGoogle Scholar
  11. 11.
    Nie Y, Viola C, Bieniossek C et al (2009) Getting a grip on complexes. Curr Genomics 10:558–572CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Komar J, Alvira S, Schulze R et al. (2016) Membrane protein insertion and assembly by the bacterial holo-translocon SecYEG-SecDF-YajC-YidC. Biochem J, July 19. pii: BCJ20160545Google Scholar
  13. 13.
    Schulze RJ, Komar J, Botte M et al (2014) Membrane protein insertion and proton-motive-force-dependent secretion through the bacterial holo-translocon SecYEG-SecDF-YajC-YidC. Proc Natl Acad Sci U S A 111:4844–4849CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Komar J, Botte M, Collinson I, Schaffitzel C et al (2015) ACEMBLing a multiprotein transmembrane complex: the functional SecYEG-SecDF-YajC-YidC Holotranslocon protein secretase/insertase. Methods Enzymol 556:23–49CrossRefPubMedGoogle Scholar
  15. 15.
    Bieniossek C, Nie Y, Frey D et al (2009) Automated unrestricted multigene recombineering for multiprotein complex production. Nat Methods 6:447–450CrossRefPubMedGoogle Scholar
  16. 16.
    Vijayachandran LS, Viola C, Garzoni F et al (2011) Robots, pipelines, polyproteins: enabling multiprotein expression in prokaryotic and eukaryotic cells. J Struct Biol 175:198–208CrossRefPubMedGoogle Scholar
  17. 17.
    Haffke M, Marek M, Pelosse M et al (2015) Characterization and production of protein complexes by co-expression in Escherichia coli. Methods Mol Biol 1261:63–89CrossRefPubMedGoogle Scholar
  18. 18.
    Shetty RP, Endy D, Knight TF Jr (2008) Engineering BioBrick vectors from BioBrick parts. J Biol Eng 2:5CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Celie PH, Parret AH, Perrakis A (2016) Recombinant cloning strategies for protein expression. Curr Opin Struct Biol 38:145–154CrossRefPubMedGoogle Scholar
  20. 20.
    Benoit RM, Ostermeier C, Geiser M et al (2016) Seamless insert-plasmid assembly at high efficiency and low cost. PLoS One 11:e0153158CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Nie Y, Chaillet M, Becke C et al (2016) ACEMBL tool-kits for high-throughput multigene delivery and expression in prokaryotic and eukaryotic hosts. Adv Exp Med Biol 896:27–42CrossRefPubMedGoogle Scholar
  22. 22.
    Schaffitzel C, Ban N (2007) Generation of ribosome nascent chain complexes for structural and functional studies. J Struct Biol 158:463–471CrossRefPubMedGoogle Scholar
  23. 23.
    Metcalf WW, Jiang W, Wanner BL (1994) Use of the rep technique for allele replacement to construct new Escherichia coli hosts for maintenance of R6Kλ origin plasmids at different copy numbers. Gene 138:1–7CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Imre Berger
    • 1
    • 2
  • Quiyang Jiang
    • 2
  • Ryan J. Schulze
    • 3
  • Ian Collinson
    • 1
  • Christiane Schaffitzel
    • 1
    • 2
  1. 1.The School of BiochemistryUniversity Walk, University of BristolCliftonUK
  2. 2.The European Molecular Biology Laboratory (EMBL), and Unit of Virus Host Cell Interactions (UVHCI)Grenoble Cedex 9France
  3. 3.Department of Biochemistry and Molecular BiologyMayo ClinicRochesterUSA

Personalised recommendations