Skip to main content

A Strategy for Production of Correctly Folded Disulfide-Rich Peptides in the Periplasm of E. coli

  • Protocol
  • First Online:
Heterologous Gene Expression in E.coli

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1586))

  • 6193 Accesses

Abstract

Recombinant expression of disulfide-reticulated peptides and proteins is often challenging. We describe a method that exploits the periplasmic disulfide-bond forming machinery of Escherichia coli and combines this with a cleavable, solubility-enhancing fusion tag to obtain higher yields of correctly folded target protein than is achievable via cytoplasmic expression. The protocols provided herein cover all aspects of this approach, from vector construction and transformation to purification of the cleaved target protein and subsequent quality control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
EUR 44.95
Price includes VAT (Finland)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 106.99
Price includes VAT (Finland)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 142.99
Price includes VAT (Finland)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
EUR 219.99
Price includes VAT (Finland)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lobstein J, Emrich CA, Jeans C et al (2012) SHuffle, a novel Escherichia coli protein expression strain capable of correctly folding disulfide bonded proteins in its cytoplasm. Microb Cell Fact 11:56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Escoubas P, Sollod BL, King GF (2006) Venom landscapes: mining the complexity of spider venoms via a combined cDNA and mass spectrometric approach. Toxicon 47:650–663

    Article  CAS  PubMed  Google Scholar 

  3. Dutertre S, Jin AH, Kaas Q et al (2013) Deep venomics reveals the mechanism for expanded peptide diversity in cone snail venom. Mol Cell Proteomics 12:312–329

    Article  CAS  PubMed  Google Scholar 

  4. Lewis RJ, Garcia ML (2003) Therapeutic potential of venom peptides. Nat Rev Drug Discov 2:790–802

    Article  CAS  PubMed  Google Scholar 

  5. King GF (2011) Venoms as a platform for human drugs: translating toxins into therapeutics. Expert Opin Biol Ther 11:1469–1484

    Article  CAS  PubMed  Google Scholar 

  6. Zambelli VO, Pasqualoto KF, Picolo G et al. (2016) Harnessing the knowledge of animal toxins to generate drugs. Pharmacol Res 112:30–36

    Google Scholar 

  7. Schwartz EF, Mourao CB, Moreira KG et al (2012) Arthropod venoms: a vast arsenal of insecticidal neuropeptides. Biopolymers 98:385–405

    Article  CAS  PubMed  Google Scholar 

  8. King GF, Hardy MC (2013) Spider-venom peptides: structure, pharmacology, and potential for control of insect pests. Annu Rev Entomol 58:475–496

    Article  CAS  PubMed  Google Scholar 

  9. Smith JJ, Herzig V, King GF et al (2013) The insecticidal potential of venom peptides. Cell Mol Life Sci 70:3665–3693

    Article  CAS  PubMed  Google Scholar 

  10. Salinas G, Pellizza L, Margenat M et al (2011) Tuned Escherichia coli as a host for the expression of disulfide-rich proteins. Biotechnol J 6:686–699

    Article  CAS  PubMed  Google Scholar 

  11. Nozach H, Fruchart-Gaillard C, Fenaille F et al (2013) High throughput screening identifies disulfide isomerase DsbC as a very efficient partner for recombinant expression of small disulfide-rich proteins in E. coli. Microb Cell Fact 12:37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Baneyx F, Mujacic M (2004) Recombinant protein folding and misfolding in Escherichia coli. Nat Biotechnol 22:1399–1408

    Article  CAS  PubMed  Google Scholar 

  13. Choi JH, Lee SY (2004) Secretory and extracellular production of recombinant proteins using Escherichia coli. Appl Microbiol Biotechnol 64:625–635

    Article  CAS  PubMed  Google Scholar 

  14. Saez NJ, Mobli M, Bieri M et al (2011) A dynamic pharmacophore drives the interaction between Psalmotoxin-1 and the putative drug target acid-sensing ion channel 1a. Mol Pharmacol 80:796–808

    Article  CAS  PubMed  Google Scholar 

  15. Anangi R, Rash LD, Mobli M et al (2012) Functional expression in Escherichia coli of the disulfide-rich sea anemone peptide APETx2, a potent blocker of acid-sensing ion channel 3. Mar Drugs 10:1605–1618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bende NS, Dziemborowicz S, Mobli M et al (2014) A distinct sodium channel voltage-sensor locus determines insect selectivity of the spider toxin Dc1a. Nat Commun 5:4350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bende NS, Dziemborowicz S, Herzig V et al (2015) The insecticidal spider toxin SFI1 is a knottin peptide that blocks the pore of insect voltage-gated sodium channels via a large β-hairpin loop. FEBS J 282:904–920

    Article  CAS  PubMed  Google Scholar 

  18. Cardoso FC, Dekan Z, Rosengren KJ et al (2015) Identification and characterization of ProTx-III [μ-TRTX-Tp1a], a new voltage-gated sodium channel inhibitor from venom of the tarantula Thrixopelma pruriens. Mol Pharmacol 88:291–303

    Article  CAS  PubMed  Google Scholar 

  19. Klint JK, Senff S, Saez NJ et al (2013) Production of recombinant disulfide-rich venom peptides for structural and functional analysis via expression in the periplasm of E. coli. PLoS One 8:e63865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Klint JK, Smith JJ, Vetter I et al (2015) Seven novel modulators of the analgesic target NaV1.7 uncovered using a high-throughput venom-based discovery approach. Br J Pharmacol 172:2445–2458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cabrita LD, Dai W, Bottomley SP (2006) A family of E. coli expression vectors for laboratory scale and high throughput soluble protein production. BMC Biotechnol 6:12

    Article  PubMed  PubMed Central  Google Scholar 

  22. Eschenfeldt WH, Lucy S, Millard CS et al (2009) A family of LIC vectors for high-throughput cloning and purification of proteins. Methods Mol Biol 498:105–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Stols L, Gu M, Dieckman L et al (2002) A new vector for high-throughput, ligation-independent cloning encoding a tobacco etch virus protease cleavage site. Protein Expr Purif 25:8–15

    Article  CAS  PubMed  Google Scholar 

  24. Kapust RB, Tozser J, Copeland TD et al (2002) The P1′ specificity of tobacco etch virus protease. Biochem Biophys Res Commun 294:949–955

    Article  CAS  PubMed  Google Scholar 

  25. Dutertre S, Ulens C, Buttner R et al (2007) AChBP-targeted α-conotoxin correlates distinct binding orientations with nAChR subtype selectivity. EMBO J 26:3858–3867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yang S, Liu Z, Xiao Y et al (2012) Chemical punch packed in venoms makes centipedes excellent predators. Mol Cell Proteomics 11:640–650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ariki NK, Muñoz LE, Armitage EL et al. (2016) Characterization of three venom peptides from the spitting spider Scytodes thoracica. PLoS One 11:e0156291

    Google Scholar 

  28. Bosmans F, Rash L, Zhu S et al (2006) Four novel tarantula toxins as selective modulators of voltage-gated sodium channel subtypes. Mol Pharmacol 69:419–429

    Article  CAS  PubMed  Google Scholar 

  29. Xiao Y, Liang S (2003) Inhibition of neuronal tetrodotoxin-sensitive Na+ channels by two spider toxins: hainantoxin-III and hainantoxin-IV. Eur J Pharmacol 477:1–7

    Article  CAS  PubMed  Google Scholar 

  30. Li D, Xiao Y, Hu W et al (2003) Function and solution structure of hainantoxin-I, a novel insect sodium channel inhibitor from the Chinese bird spider Selenocosmia hainana. FEBS Lett 555:616–622

    Article  CAS  PubMed  Google Scholar 

  31. Hardy MC, Daly NL, Mobli M et al (2013) Isolation of an orally active insecticidal toxin from the venom of an Australian tarantula. PLoS One 8:e73136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. King GF, Hardy MC (2013) Pest-controlling agents isolated from spider venom and uses thereof. Australian Patent WO 2013026105 A1

    Google Scholar 

  33. Choi SJ, Parent R, Guillaume C et al (2004) Isolation and characterization of Psalmopeotoxin I and II: two novel antimalarial peptides from the venom of the tarantula Psalmopoeus cambridgei. FEBS Lett 572:109–117

    Article  CAS  PubMed  Google Scholar 

  34. Jung HJ, Lee JY, Kim SH et al (2005) Solution structure and lipid membrane partitioning of VSTx1, an inhibitor of the KvAP potassium channel. Biochemistry 44:6015–6023

    Article  CAS  PubMed  Google Scholar 

  35. Xiao YC, Liang SP (2003) Purification and characterization of Hainantoxin-V, a tetrodotoxin-sensitive sodium channel inhibitor from the venom of the spider Selenocosmia hainana. Toxicon 41:643–650

    Article  CAS  PubMed  Google Scholar 

  36. Yang S, Xiao Y, Kang D et al (2013) Discovery of a selective NaV1.7 inhibitor from centipede venom with analgesic efficacy exceeding morphine in rodent pain models. Proc Natl Acad Sci U S A 110:17534–17539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Undheim EA, Grimm LL, Low CF et al (2015) Weaponization of a hormone: convergent recruitment of hyperglycemic hormone into the venom of arthropod predators. Structure 23:1283–1292

    Article  CAS  PubMed  Google Scholar 

  38. Bende NS, Kang E, Herzig V et al (2013) The insecticidal neurotoxin Aps III is an atypical knottin peptide that potently blocks insect voltage-gated sodium channels. Biochem Pharmacol 85:1542–1554

    Article  CAS  PubMed  Google Scholar 

  39. Cordeiro MN, de Figueiredo SG, Valentim Ado C et al (1993) Purification and amino acid sequences of six Tx3 type neurotoxins from the venom of the Brazilian ‘armed’ spider Phoneutria nigriventer (Keys). Toxicon 31:35–42

    Article  CAS  Google Scholar 

  40. Bohlen CJ, Priel A, Zhou S et al (2010) A bivalent tarantula toxin activates the capsaicin receptor, TRPV1, by targeting the outer pore domain. Cell 141:834–845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Australian Research Council (DP130103813) and the Australian National Health and Medical Research Council (Principal Research Fellowship and Project Grant APP1063798 to G.F.K.). B.C.-A. is supported by an Australian Postgraduate Award from the Australian Government.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Natalie J. Saez or Glenn F. King .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Saez, N.J., Cristofori-Armstrong, B., Anangi, R., King, G.F. (2017). A Strategy for Production of Correctly Folded Disulfide-Rich Peptides in the Periplasm of E. coli . In: Burgess-Brown, N. (eds) Heterologous Gene Expression in E.coli. Methods in Molecular Biology, vol 1586. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6887-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6887-9_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6885-5

  • Online ISBN: 978-1-4939-6887-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics