Systems Imaging of the Immune Synapse

  • Rachel Ambler
  • Xiangtao Ruan
  • Robert F. Murphy
  • Christoph Wülfing
Part of the Methods in Molecular Biology book series (MIMB, volume 1584)


Three-dimensional live cell imaging of the interaction of T cells with antigen-presenting cells (APCs) visualizes the subcellular distributions of signaling intermediates during T cell activation at thousands of resolved positions within a cell. These information-rich maps of local protein concentrations are a valuable resource in understanding T cell signaling. Here, we describe a protocol for the efficient acquisition of such imaging data and their computational processing to create four-dimensional maps of local concentrations. This protocol allows quantitative analysis of T cell signaling as it occurs inside live cells with resolution in time and space across thousands of cells.

Key words

Live cell imaging Computational image analysis Spatiotemporal distributions Immunological synapse T cell activation 



The original research upon which these protocols are based was supported in part by the National Institutes of Health grant P41 GM103712, by National Science Foundation grants MCB1121793 and MCB1121919, and by the European Research Council grant PCIG11-GA-2012-321554.


  1. 1.
    Monks CR, Kupfer H, Tamir I, Barlow A, Kupfer A (1997) Selective modulation of protein kinase C-theta during T-cell activation. Nature 385(6611):83–86CrossRefPubMedGoogle Scholar
  2. 2.
    Grakoui A, Bromley SK, Sumen C, Davis MM, Shaw AS, Allen PM, Dustin ML (1999) The immunological synapse: a molecular machinery controlling T cell activation. Science 285:221–226CrossRefPubMedGoogle Scholar
  3. 3.
    Schmick M, Bastiaens PI (2014) The interdependence of membrane shape and cellular signal processing. Cell 156(6):1132–1138. doi: 10.1016/j.cell.2014.02.007 CrossRefPubMedGoogle Scholar
  4. 4.
    Angermann BR, Klauschen F, Garcia AD, Prustel T, Zhang F, Germain RN, Meier-Schellersheim M (2012) Computational modeling of cellular signaling processes embedded into dynamic spatial contexts. Nat Methods 9(3):283–289. doi: 10.1038/nmeth.1861 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Purvis JE, Lahav G (2013) Encoding and decoding cellular information through signaling dynamics. Cell 152(5):945–956. doi: 10.1016/j.cell.2013.02.005 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Mast FD, Ratushny AV, Aitchison JD (2014) Systems cell biology. J Cell Biol 206(6):695–706. doi: 10.1083/jcb.201405027 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    DeFord-Watts LM, Dougall DS, Belkaya S, Johnson BA, Eitson JL, Roybal KT, Barylko B, Albanesi JP, Wulfing C, van Oers NS (2011) The CD3 zeta subunit contains a phosphoinositide-binding motif that is required for the stable accumulation of TCR-CD3 complex at the immunological synapse. J Immunol 186(12):6839–6847. doi: 10.4049/jimmunol.1002721 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Ksionda O, Saveliev A, Kochl R, Rapley J, Faroudi M, Smith-Garvin JE, Wulfing C, Rittinger K, Carter T, Tybulewicz VL (2012) Mechanism and function of Vav1 localisation in TCR signalling. J Cell Sci 125(Pt 22):5302–5314. doi: 10.1242/jcs.105148 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Liang Y, Cucchetti M, Roncagalli R, Yokosuka T, Malzac A, Bertosio E, Imbert J, Nijman IJ, Suchanek M, Saito T, Wulfing C, Malissen B, Malissen M (2013) The lymphoid lineage-specific actin-uncapping protein Rltpr is essential for costimulation via CD28 and the development of regulatory T cells. Nat Immunol 14(8):858–866. doi: 10.1038/ni.2634 CrossRefPubMedGoogle Scholar
  10. 10.
    Paster W, Brockmeyer C, Fu G, Simister PC, de Wet B, Martinez-Riano A, Hoerter JA, Feller SM, Wulfing C, Gascoigne NR, Acuto O (2013) GRB2-mediated recruitment of THEMIS to LAT is essential for thymocyte development. J Immunol 190(7):3749–3756. doi: 10.4049/jimmunol.1203389 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Singleton KL, Gosh M, Dandekar RD, Au-Yeung BB, Ksionda O, Tybulewicz VL, Altman A, Fowell DJ, Wülfing C (2011) Itk controls the spatiotemporal organization of T cell activation. Sci Signal 4(193):ra66. doi: 10.1126/scisignal.2001821
  12. 12.
    Roybal KT, Sinai P, Verkade P, Murphy RF, Wülfing C (2013) The actin-driven spatiotemporal organization of T-cell signaling at the system scale. Immunol Rev 256(1):133–147. doi: 10.1111/imr.12103 CrossRefPubMedGoogle Scholar
  13. 13.
    Roybal KT, Mace EM, Mantell JM, Verkade P, Orange JS, Wulfing C (2015) Early signaling in primary T cells activated by antigen presenting cells is associated with a deep and transient lamellal actin network. PLoS One 10(8):e0133299. doi: 10.1371/journal.pone.0133299 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Purtic B, Pitcher LA, van Oers NS, Wülfing C (2005) T cell receptor (TCR) clustering in the immunological synapse integrates TCR and costimulatory signaling in selected T cells. Proc Natl Acad Sci U S A 102(8):2904–2909CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Sinai P, Dozmorov IM, Song R, Schwartzberg PL, Wakeland EK, Wulfing C (2014) T/B-cell interactions are more transient in response to weak stimuli in SLE-prone mice. Eur J Immunol 44(12):3522–3531. doi: 10.1002/eji.201444602 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Sinai P, Nguyen C, Schatzle JD, Wülfing C (2010) Transience in polarization of cytolytic effectors is required for efficient killing and controlled by Cdc42. Proc Natl Acad Sci U S A 107(26):11912–11917. doi: 10.1073/pnas.0913422107 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Singleton KL, Parvaze N, Dama KR, Chen KS, Jennings P, Purtic B, Sjaastad MD, Gilpin C, Davis MM, Wülfing C (2006) A large T cell invagination with CD2 enrichment resets receptor engagement in the immunological synapse. J Immunol 177(7):4402–4413CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Singleton KL, Roybal KT, Sun Y, Fu G, Gascoigne NR, van Oers NS, Wülfing C (2009) Spatiotemporal patterning during T cell activation is highly diverse. Sci Signal 2(65):ra15Google Scholar
  19. 19.
    Roybal KT, Buck TE, Ruan X, Cho BH, Clark DJ, Ambler R, Tunbridge HM, Zhang J, Verkade P, Wulfing C, Murphy RF (2016) Computational spatiotemporal analysis identifies WAVE2 and cofilin as joint regulators of costimulation-mediated T cell actin dynamics. Sci Signal 9(424):rs3. doi: 10.1126/scisignal.aad4149
  20. 20.
    Negulescu PA, Krasieva TB, Khan A, Kerschbaum HH, Cahalan MD (1996) Polarity of T cell shape, motility, and sensitivity to antigen. Immunity 4(5):421–430CrossRefPubMedGoogle Scholar
  21. 21.
    Mustelin T, Tasken K (2003) Positive and negative regulation of T-cell activation through kinases and phosphatases. Biochem J 371(Pt 1):15–27CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.School of Cellular and Molecular MedicineUniversity of BristolBristolUK
  2. 2.Computational Biology Department, School of Computer ScienceCarnegie Mellon UniversityPittsburghUSA
  3. 3.Department of Biological SciencesCarnegie Mellon UniversityPittsburghUSA
  4. 4.Department of Biomedical EngineeringCarnegie Mellon UniversityPittsburghUSA
  5. 5.Department of Machine LearningCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations