Skip to main content

Purification of LAT-Containing Membranes from Resting and Activated T Lymphocytes

  • Protocol
  • First Online:
The Immune Synapse

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1584))

Abstract

In T lymphocytes, the immune synapse is an active zone of vesicular traffic. Directional transport of vesicular receptors and signaling molecules from or to the immune synapse has been shown to play an important role in T-cell receptor (TCR) signal transduction. However, how vesicular trafficking is regulating the activation of T cells is still a burning question, and the characterization of these intracellular compartments remains the first step to understand this process. We describe herein a protocol, which combines a separation of membranes on flotation gradient with an affinity purification of Strep-tagged fusion transmembrane proteins with Strep-Tactin® resin, allowing the purification of membranes containing the Strep-tagged molecule of interest. By keeping the membranes intact, this protocol leads to the purification of molecules physically associated with the Strep-tagged protein as well as of molecules present in the same membrane compartment: transmembrane proteins, proteins strongly associated with the membranes, and luminal proteins. The example shown herein is the purification of membrane compartment prepared from T lymphocytes expressing LAT fused to a Strep-tag.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Monks CR, Freiberg BA, Kupfer H, Sciaky N, Kupfer A (1998) Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 395(6697):82–86

    Article  CAS  PubMed  Google Scholar 

  2. Grakoui A, Bromley SK, Sumen C, Davis MM, Shaw AS, Allen PM, Dustin ML (1999) The immunological synapse: a molecular machine controlling T cell activation [see comments]. Science 285(5425):221–227

    Article  CAS  PubMed  Google Scholar 

  3. Yokosuka T, Sakata-Sogawa K, Kobayashi W, Hiroshima M, Hashimoto-Tane A, Tokunaga M, Dustin ML, Saito T (2005) Newly generated T cell receptor microclusters initiate and sustain T cell activation by recruitment of Zap70 and SLP-76. Nat Immunol 6(12):1253–1262

    Article  CAS  PubMed  Google Scholar 

  4. Campi G, Varma R, Dustin ML (2005) Actin and agonist MHC-peptide complex-dependent T cell receptor microclusters as scaffolds for signaling. J Exp Med 202(8):1031–1036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kupfer A, Mosmann TR, Kupfer H (1991) Polarized expression of cytokines in cell conjugates of helper T cells and splenic B cells. Proc Natl Acad Sci U S A 88(3):775–779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kupfer A, Singer SJ, Dennert G (1986) On the mechanism of unidirectional killing in mixtures of two cytotoxic T lymphocytes. Unidirectional polarization of cytoplasmic organelles and the membrane-associated cytoskeleton in the effector cell. J Exp Med 163(3):489–498

    Article  CAS  PubMed  Google Scholar 

  7. Chemin K, Bohineust A, Dogniaux S, Tourret M, Guegan S, Miro F, Hivroz C (2012) Cytokine secretion by CD4+ T cells at the immunological synapse requires Cdc42-dependent local actin remodeling but not microtubule organizing center polarity. J Immunol 189(5):2159–2168

    Article  CAS  PubMed  Google Scholar 

  8. Griffiths GM, Tsun A, Stinchcombe JCThe immunological synapse: a focal point for endocytosis and exocytosis. J Cell Biol 189(3):399–406

    Google Scholar 

  9. Rossy J, Pageon SV, Davis DM, Gaus K (2013) Super-resolution microscopy of the immunological synapse. Curr Opin Immunol 25(3):307–312

    Article  CAS  PubMed  Google Scholar 

  10. Purbhoo MA (2013) The function of sub-synaptic vesicles during T-cell activation. Immunol Rev 251(1):36–48

    Article  PubMed  Google Scholar 

  11. Onnis A, Finetti F, Baldari CT (2016) Vesicular trafficking to the immune synapse: how to assemble receptor-tailored pathways from a basic building set. Front Immunol 7:50

    Article  PubMed  PubMed Central  Google Scholar 

  12. Purbhoo MA, Liu H, Oddos S, Owen DM, Neil MA, Pageon SV, French PM, Rudd CE, Davis DM (2010) Dynamics of subsynaptic vesicles and surface microclusters at the immunological synapse. Sci Signal 3(121):ra36

    Article  PubMed  Google Scholar 

  13. Williamson DJ, Owen DM, Rossy J, Magenau A, Wehrmann M, Gooding JJ, Gaus K (2011) Pre-existing clusters of the adaptor Lat do not participate in early T cell signaling events. Nat Immunol 12(7):655–662

    Article  CAS  PubMed  Google Scholar 

  14. Soares H, Henriques R, Sachse M, Ventimiglia L, Alonso MA, Zimmer C, Thoulouze MI, Alcover A (2013) Regulated vesicle fusion generates signaling nanoterritories that control T cell activation at the immunological synapse. J Exp Med 210(11):2415–2433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Larghi P, Williamson DJ, Carpier JM, Dogniaux S, Chemin K, Bohineust A, Danglot L, Gaus K, Galli T, Hivroz C (2013) VAMP7 controls T cell activation by regulating the recruitment and phosphorylation of vesicular Lat at TCR-activation sites. Nat Immunol 14(7):723–731

    Article  CAS  PubMed  Google Scholar 

  16. Vieira AV, Lamaze C, Schmid SL (1996) Control of EGF receptor signaling by clathrin-mediated endocytosis. Science 274(5295):2086–2089

    Article  CAS  PubMed  Google Scholar 

  17. Di Guglielmo GM, Le Roy C, Goodfellow AF, Wrana JL (2003) Distinct endocytic pathways regulate TGF-beta receptor signalling and turnover. Nat Cell Biol 5(5):410–421

    Article  CAS  PubMed  Google Scholar 

  18. McGettrick AF, O’Neill LA (2010) Localisation and trafficking of Toll-like receptors: an important mode of regulation. Curr Opin Immunol 22(1):20–27

    Article  CAS  PubMed  Google Scholar 

  19. Chaturvedi A, Martz R, Dorward D, Waisberg M, Pierce SK (2011) Endocytosed BCRs sequentially regulate MAPK and Akt signaling pathways from intracellular compartments. Nat Immunol 12(11):1119–1126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mor A, Campi G, Du G, Zheng Y, Foster DA, Dustin ML, Philips MR (2007) The lymphocyte function-associated antigen-1 receptor costimulates plasma membrane Ras via phospholipase D2. Nat Cell Biol 9(6):713–719

    Article  CAS  PubMed  Google Scholar 

  21. Daniels MA, Teixeiro E, Gill J, Hausmann B, Roubaty D, Holmberg K, Werlen G, Hollander GA, Gascoigne NR, Palmer E (2006) Thymic selection threshold defined by compartmentalization of Ras/MAPK signalling. Nature 444(7120):724–729

    Article  CAS  PubMed  Google Scholar 

  22. Perez de Castro I, Bivona TG, Philips MR, Pellicer A (2004) Ras activation in Jurkat T cells following low-grade stimulation of the T-cell receptor is specific to N-Ras and occurs only on the Golgi apparatus. Mol Cell Biol 24(8):3485–3496

    Article  PubMed  PubMed Central  Google Scholar 

  23. Choudhuri K, Llodra J, Roth EW, Tsai J, Gordo S, Wucherpfennig KW, Kam LC, Stokes DL, Dustin ML (2014) Polarized release of T-cell-receptor-enriched microvesicles at the immunological synapse. Nature 507(7490):118–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Finetti F, Onnis A, Baldari CT (2015) Regulation of vesicular traffic at the T cell immune synapse: lessons from the primary cilium. Traffic 16(3):241–249

    Article  CAS  PubMed  Google Scholar 

  25. Lillemeier BF, Mortelmaier MA, Forstner MB, Huppa JB, Groves JT, Davis MM (2010) TCR and Lat are expressed on separate protein islands on T cell membranes and concatenate during activation. Nat Immunol 11(1):90–96

    Article  CAS  PubMed  Google Scholar 

  26. Balagopalan L, Barr VA, Kortum RL, Park AK, Samelson LE (2013) Cutting edge: cell surface linker for activation of T cells is recruited to microclusters and is active in signaling. J Immunol 190(8):3849–3853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Weber JR, Orstavik S, Torgersen KM, Danbolt NC, Berg SF, Ryan JC, Tasken K, Imboden JB, Vaage JT (1998) Molecular cloning of the cDNA encoding pp36, a tyrosine-phosphorylated adaptor protein selectively expressed by T cells and natural killer cells. J Exp Med 187(7):1157–1161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang W, Sloan-Lancaster J, Kitchen J, Trible RP, Samelson LE (1998) LAT: the ZAP-70 tyrosine kinase substrate that links T cell receptor to cellular activation. Cell 92(1):83–92

    Article  CAS  PubMed  Google Scholar 

  29. Bonello G, Blanchard N, Montoya MC, Aguado E, Langlet C, He HT, Nunez-Cruz S, Malissen M, Sanchez-Madrid F, Olive D, Hivroz C, Collette Y (2004) Dynamic recruitment of the adaptor protein LAT: LAT exists in two distinct intracellular pools and controls its own recruitment. J Cell Sci 117(Pt 7):1009–1016

    Article  CAS  PubMed  Google Scholar 

  30. Junttila MR, Saarinen S, Schmidt T, Kast J, Westermarck J (2005) Single-step Strep-tag purification for the isolation and identification of protein complexes from mammalian cells. Proteomics 5(5):1199–1203

    Article  CAS  PubMed  Google Scholar 

  31. Roncagalli R, Hauri S, Fiore F, Liang Y, Chen Z, Sansoni A, Kanduri K, Joly R, Malzac A, Lahdesmaki H, Lahesmaa R, Yamasaki S, Saito T, Malissen M, Aebersold R, Gstaiger M, Malissen B (2014) Quantitative proteomics analysis of signalosome dynamics in primary T cells identifies the surface receptor CD6 as a Lat adaptor-independent TCR signaling hub. Nat Immunol 15(4):384–392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Paster W, Bruger AM, Katsch K, Gregoire C, Roncagalli R, Fu G, Gascoigne NR, Nika K, Cohnen A, Feller SM, Simister PC, Molder KC, Cordoba SP, Dushek O, Malissen B, Acuto O (2015) A THEMIS:SHP1 complex promotes T-cell survival. EMBO J 34(3):393–409

    Article  CAS  PubMed  Google Scholar 

  33. Finco TS, Kadlecek T, Zhang W, Samelson LE, Weiss A (1998) LAT is required for TCR-mediated activation of PLCgamma1 and the Ras pathway. Immunity 9(5):617–626

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank R. Roncagalli for providing the LAT-Strep-tag® construct and for helpful discussion. We are grateful to S. Dogniaux, J.M. Carpier, M. Saitakis, and A. Zucchetti for their kind support.This work was supported by ANR-10-IDEX-0001-02 PSL*, ANR-11-LABX-0043, ANR-13-BSV2-0018 “NeuroImmunoSynapse”), and Fondation pour la Recherche Médicale (FRM, FRM DEQ20140329513).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurence Ardouin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Hivroz, C., Larghi, P., Jouve, M., Ardouin, L. (2017). Purification of LAT-Containing Membranes from Resting and Activated T Lymphocytes. In: Baldari, C., Dustin, M. (eds) The Immune Synapse. Methods in Molecular Biology, vol 1584. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6881-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6881-7_21

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6879-4

  • Online ISBN: 978-1-4939-6881-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics