Skip to main content

Measurement of Mitochondrial Cholesterol Import Using a Mitochondria-Targeted CYP11A1 Fusion Construct

  • Protocol
  • First Online:
Cholesterol Homeostasis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1583))

Abstract

All animal membranes require cholesterol as an essential regulator of biophysical properties and function, but the levels of cholesterol vary widely among different subcellular compartments. Mitochondria, and in particular the inner mitochondrial membrane, have the lowest levels of cholesterol in the cell. Nevertheless, mitochondria need cholesterol for membrane maintenance and biogenesis, as well as oxysterol, steroid, and hepatic bile acid production. Alterations in mitochondrial cholesterol have been associated with a range of pathological conditions, including cancer, hepatosteatosis, cardiac ischemia, Alzheimer’s, and Niemann–Pick Type C Disease. The mechanisms of mitochondrial cholesterol import are not fully elucidated yet, and may vary in different cell types and environmental conditions. Measuring cholesterol trafficking to the mitochondrial membranes is technically challenging because of its low abundance; for example, traditional pulse-chase experiments with isotope-labeled cholesterol are not feasible. Here, we describe improvements to a method first developed by the Miller group at the University of California to measure cholesterol trafficking to the inner mitochondrial membrane (IMM) through the conversion of cholesterol to pregnenolone. This method uses a mitochondria-targeted, ectopically expressed fusion construct of CYP11A1, ferredoxin reductase and ferredoxin. Pregnenolone is formed exclusively from cholesterol at the IMM, and can be analyzed with high sensitivity and specificity through ELISA or radioimmunoassay of the medium/buffer to reflect mitochondrial cholesterol import. This assay can be used to investigate the effects of genetic or pharmacological interventions on mitochondrial cholesterol import in cultured cells or isolated mitochondria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Horvath SE, Daum G (2013) Lipids of mitochondria. Prog Lipid Res 52:590–614

    Article  CAS  PubMed  Google Scholar 

  2. Baggetto LG, Clottes E, Vial C (1992) Low mitochondrial proton leak due to high membrane cholesterol content and cytosolic creatine kinase as two features of the deviant bioenergetics of Ehrlich and AS30-D tumor cells. Cancer Res 52:4935–4941

    CAS  PubMed  Google Scholar 

  3. Montero J, Morales A, Llacuna L, Lluis JM, Terrones O, Basanez G, Antonsson B, Prieto J, Garcia-Ruiz C, Colell A, Fernandez-Checa JC (2008) Mitochondrial cholesterol contributes to chemotherapy resistance in hepatocellular carcinoma. Cancer Res 68:5246–5256

    Article  CAS  PubMed  Google Scholar 

  4. Parlo RA, Coleman PS (1984) Enhanced rate of citrate export from cholesterol-rich hepatoma mitochondria. The truncated Krebs cycle and other metabolic ramifications of mitochondrial membrane cholesterol. J Biol Chem 259:9997–10003

    CAS  PubMed  Google Scholar 

  5. Rouslin W, MacGee J, Gupte S, Wesselman A, Epps DE (1982) Mitochondrial cholesterol content and membrane properties in porcine myocardial ischemia. Am J Physiol 242:H254–H259

    CAS  PubMed  Google Scholar 

  6. Sangeetha T, Darlin Quine S (2009) Preventive effect of S-allyl cysteine sulphoxide (Alliin) on mitochondrial dysfunction in normal and isoproterenol induced cardiotoxicity in male Wistar rats: a histopathological study. Mol Cell Biochem 328:1–8

    Article  CAS  PubMed  Google Scholar 

  7. Colell A, Garcia-Ruiz C, Morales A, Ballesta A, Ookhtens M, Rodes J, Kaplowitz N, Fernandez-Checa JC (1997) Transport of reduced glutathione in hepatic mitochondria and mitoplasts from ethanol-treated rats: effect of membrane physical properties and S-adenosyl-L-methionine. Hepatology 26:699–708

    CAS  PubMed  Google Scholar 

  8. Lluis JM, Colell A, Garcia-Ruiz C, Kaplowitz N, Fernandez-Checa JC (2003) Acetaldehyde impairs mitochondrial glutathione transport in HepG2 cells through endoplasmic reticulum stress. Gastroenterology 124:708–724

    Article  CAS  PubMed  Google Scholar 

  9. Coll O, Colell A, Garcia-Ruiz C, Kaplowitz N, Fernandez-Checa JC (2003) Sensitivity of the 2-oxoglutarate carrier to alcohol intake contributes to mitochondrial glutathione depletion. Hepatology 38:692–702

    Article  CAS  PubMed  Google Scholar 

  10. Mari M, Caballero F, Colell A, Morales A, Caballeria J, Fernandez A, Enrich C, Fernandez-Checa JC, Garcia-Ruiz C (2006) Mitochondrial free cholesterol loading sensitizes to TNF- and Fas-mediated steatohepatitis. Cell Metab 4:185–198

    Article  CAS  PubMed  Google Scholar 

  11. Barbero-Camps E, Fernandez A, Baulies A, Martinez L, Fernandez-Checa JC, Colell A (2014) Endoplasmic reticulum stress mediates amyloid beta neurotoxicity via mitochondrial cholesterol trafficking. Am J Pathol 184:2066–2081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Barbero-Camps E, Fernandez A, Martinez L, Fernandez-Checa JC, Colell A (2013) APP/PS1 mice overexpressing SREBP-2 exhibit combined Abeta accumulation and tau pathology underlying Alzheimer’s disease. Hum Mol Genet 22:3460–3476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fernandez A, Llacuna L, Fernandez-Checa JC, Colell A (2009) Mitochondrial cholesterol loading exacerbates amyloid beta peptide-induced inflammation and neurotoxicity. J Neurosci 29:6394–6405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Charman M, Kennedy BE, Osborne N, Karten B (2010) MLN64 mediates egress of cholesterol from endosomes to mitochondria in the absence of functional Niemann-Pick type C1 protein. J Lipid Res 51:1023–1034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yu W, Gong JS, Ko M, Garver WS, Yanagisawa K, Michikawa M (2005) Altered cholesterol metabolism in Niemann-Pick type C1 mouse brains affects mitochondrial function. J Biol Chem 280:11731–11739

    Article  CAS  PubMed  Google Scholar 

  16. Colell A, Garcia-Ruiz C, Lluis JM, Coll O, Mari M, Fernandez-Checa JC (2003) Cholesterol impairs the adenine nucleotide translocator-mediated mitochondrial permeability transition through altered membrane fluidity. J Biol Chem 278:33928–33935

    Article  CAS  PubMed  Google Scholar 

  17. Paradis S, Leoni V, Caccia C, Berdeaux A, Morin D (2013) Cardioprotection by the TSPO ligand 4′-chlorodiazepam is associated with inhibition of mitochondrial accumulation of cholesterol at reperfusion. Cardiovasc Res 98:420–427

    Google Scholar 

  18. Bosch M, Mari M, Herms A, Fernandez A, Fajardo A, Kassan A, Giralt A, Colell A, Balgoma D, Barbero E, Gonzalez-Moreno E, Matias N, Tebar F, Balsinde J, Camps M, Enrich C, Gross SP, Garcia-Ruiz C, Perez-Navarro E, Fernandez-Checa JC, Pol A (2011) Caveolin-1 deficiency causes cholesterol-dependent mitochondrial dysfunction and apoptotic susceptibility. Curr Biol 21:681–686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bosch M, Mari M, Gross SP, Fernandez-Checa JC, Pol A (2011) Mitochondrial cholesterol: a connection between caveolin, metabolism, and disease. Traffic 12:1483–1489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Martin LA, Kennedy BE, Karten B (2016) Mitochondrial cholesterol: mechanisms of import and effects on mitochondrial function. J Bioenerg Biomembr 2:137–151

    Google Scholar 

  21. Garcia-Ruiz C, Mari M, Colell A, Morales A, Caballero F, Montero J, Terrones O, Basanez G, Fernandez-Checa JC (2009) Mitochondrial cholesterol in health and disease. Histol Histopathol 24:117–132

    CAS  PubMed  Google Scholar 

  22. Caballero F, Fernandez A, De Lacy AM, Fernandez-Checa JC, Caballeria J, Garcia-Ruiz C (2009) Enhanced free cholesterol, SREBP-2 and StAR expression in human NASH. J.Hepatol. 50:789–796

    Article  CAS  PubMed  Google Scholar 

  23. Llacuna L, Fernandez A, Montfort CV, Matias N, Martinez L, Caballero F, Rimola A, Elena M, Morales A, Fernandez-Checa JC, Garcia-Ruiz C (2011) Targeting cholesterol at different levels in the mevalonate pathway protects fatty liver against ischemia-reperfusion injury. J Hepatol 54:1002–1010

    Article  CAS  PubMed  Google Scholar 

  24. Fernandez A, Matias N, Fucho R, Ribas V, Von Montfort C, Nuno N, Baulies A, Martinez L, Tarrats N, Mari M, Colell A, Morales A, Dubuquoy L, Mathurin P, Bataller R, Caballeria J, Elena M, Balsinde J, Kaplowitz N, Garcia-Ruiz C, Fernandez-Checa JC (2013) ASMase is required for chronic alcohol induced hepatic endoplasmic reticulum stress and mitochondrial cholesterol loading. J Hepatol 59:805–813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ha SD, Park S, Han CY, Nguyen ML, Kim SO (2012) Cellular adaptation to anthrax lethal toxin-induced mitochondrial cholesterol enrichment, hyperpolarization, and reactive oxygen species generation through downregulating MLN64 in macrophages. Mol Cell Biol 32:4846–4860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mei S, Gu H, Yang X, Guo H, Liu Z, Cao W (2012) Prolonged exposure to insulin induces mitochondrion-derived oxidative stress through increasing mitochondrial cholesterol content in hepatocytes. Endocrinology 153:2120–2129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kennedy BE, Madreiter CT, Vishnu N, Malli R, Graier WF, Karten B (2014) Adaptations of energy metabolism associated with increased levels of mitochondrial cholesterol in Niemann-Pick type C1-deficient cells. J Biol Chem 289(23):16278–16289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kennedy BE, Leblanc VG, Mailman TM, Fice D, Burton I, Karakach TK, Karten B (2013) Pre-symptomatic activation of antioxidant responses and alterations in glucose and pyruvate metabolism in niemann-pick type c1-deficient murine brain. PLoS One 8:e82685

    Article  PubMed  PubMed Central  Google Scholar 

  29. Campbell AM, Chan SH (2007) The voltage dependent anion channel affects mitochondrial cholesterol distribution and function. Arch Biochem Biophys 466:203–210

    Article  CAS  PubMed  Google Scholar 

  30. Echegoyen S, Oliva EB, Sepulveda J, Diaz-Zagoya JC, Espinosa-Garcia MT, Pardo JP, Martinez F (1993) Cholesterol increase in mitochondria: its effect on inner-membrane functions, submitochondrial localization and ultrastructural morphology. Biochem J 289(Pt 3):703–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Montero J, Mari M, Colell A, Morales A, Basanez G, Garcia-Ruiz C, Fernandez-Checa JC (2010) Cholesterol and peroxidized cardiolipin in mitochondrial membrane properties, permeabilization and cell death. Biochim Biophys Acta 1797:1217–1224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lucken-Ardjomande S, Montessuit S, Martinou JC (2008) Bax activation and stress-induced apoptosis delayed by the accumulation of cholesterol in mitochondrial membranes. Cell Death Differ 15:484–493

    Article  CAS  PubMed  Google Scholar 

  33. Miller WL (2007) Steroidogenic acute regulatory protein (StAR), a novel mitochondrial cholesterol transporter. Biochim Biophys Acta 1771:663–676

    Article  CAS  PubMed  Google Scholar 

  34. Miller WL, Bose HS (2011) Early steps in steroidogenesis: intracellular cholesterol trafficking. J Lipid Res 52:2111–2135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Strauss JF 3rd, Kishida T, Christenson LK, Fujimoto T, Hiroi H (2003) START domain proteins and the intracellular trafficking of cholesterol in steroidogenic cells. Mol Cell Endocrinol 202:59–65

    Article  CAS  PubMed  Google Scholar 

  36. Stocco DM (2001) Tracking the role of a star in the sky of the new millennium. Mol Endocrinol 15:1245–1254

    Article  CAS  PubMed  Google Scholar 

  37. Lange Y, Steck TL, Ye J, Lanier MH, Molugu V, Ory D (2009) Regulation of fibroblast mitochondrial 27-hydroxycholesterol production by active plasma membrane cholesterol. J Lipid Res 50:1881–1888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kennedy BE, Charman M, Karten B (2012) Niemann-Pick type C2 protein contributes to the transport of endosomal cholesterol to mitochondria without interacting with NPC1. J Lipid Res 53:2632–2642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lin Y, Hou X, Shen WJ, Hanssen R, Khor VK, Cortez Y, Roseman AN, Azhar S, Kraemer FB (2016) SNARE-mediated cholesterol movement to mitochondria supports steroidogenesis in rodent cells. Mol Endocrinol 30:234–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kraemer FB, Khor VK, Shen WJ, Azhar S (2013) Cholesterol ester droplets and steroidogenesis. Mol Cell Endocrinol 371:15–19

    Article  CAS  PubMed  Google Scholar 

  41. Prasad M, Kaur J, Pawlak KJ, Bose M, Whittal RM, Bose HS (2015) Mitochondria-associated endoplasmic reticulum membrane (MAM) regulates steroidogenic activity via steroidogenic acute regulatory protein (StAR)-voltage-dependent anion channel 2 (VDAC2) interaction. J Biol Chem 290:2604–2616

    Article  CAS  PubMed  Google Scholar 

  42. Issop L, Rone MB, Papadopoulos V (2013) Organelle plasticity and interactions in cholesterol transport and steroid biosynthesis. Mol Cell Endocrinol 371:34–46

    Google Scholar 

  43. Rone MB, Midzak AS, Issop L, Rammouz G, Jagannathan S, Fan J, Ye X, Blonder J, Veenstra T, Papadopoulos V (2012) Identification of a dynamic mitochondrial protein complex driving cholesterol import, trafficking, and metabolism to steroid hormones. Mol Endocrinol 26:1868–1882

    Article  CAS  PubMed  Google Scholar 

  44. Selvaraj V, Stocco DM, Tu LN (2015) Minireview: translocator protein (TSPO) and steroidogenesis: a reappraisal. Mol Endocrinol 29:490–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gimpl G, Gehrig-Burger K (2007) Cholesterol reporter molecules. Biosci Rep 27:335–358

    Article  CAS  PubMed  Google Scholar 

  46. Maxfield FR, Wustner D (2012) Analysis of cholesterol trafficking with fluorescent probes. Methods Cell Biol 108:367–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hofmann K, Thiele C, Schott HF, Gaebler A, Schoene M, Kiver Y, Friedrichs S, Lutjohann D, Kuerschner L (2014) A novel alkyne cholesterol to trace cellular cholesterol metabolism and localization. J Lipid Res 55:583–591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jao CY, Nedelcu D, Lopez LV, Samarakoon TN, Welti R, Salic A (2015) Bioorthogonal probes for imaging sterols in cells. Chembiochem 16:611–617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bose HS, Sugawara T, Strauss JF 3rd, Miller WL, International Congenital Lipoid Adrenal Hyperplasia Consortium (1996) The pathophysiology and genetics of congenital lipoid adrenal hyperplasia. N Engl J Med 335:1870–1878

    Article  CAS  PubMed  Google Scholar 

  50. Lin D, Sugawara T, Strauss JF 3rd, Clark BJ, Stocco DM, Saenger P, Rogol A, Miller WL (1995) Role of steroidogenic acute regulatory protein in adrenal and gonadal steroidogenesis. Science 267:1828–1831

    Article  CAS  PubMed  Google Scholar 

  51. Harikrishna JA, Black SM, Szklarz GD, Miller WL (1993) Construction and function of fusion enzymes of the human cytochrome P450scc system. DNA Cell Biol 12:371–379

    Article  CAS  PubMed  Google Scholar 

  52. Black SM, Harikrishna JA, Szklarz GD, Miller WL (1994) The mitochondrial environment is required for activity of the cholesterol side-chain cleavage enzyme, cytochrome P450scc. Proc Natl Acad Sci U S A 91:7247–7251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Huang MC, Miller WL (2001) Creation and activity of COS-1 cells stably expressing the F2 fusion of the human cholesterol side-chain cleavage enzyme system. Endocrinology 142:2569–2576

    CAS  PubMed  Google Scholar 

  54. Bose M, Whittal RM, Miller WL, Bose HS (2008) Steroidogenic activity of StAR requires contact with mitochondrial VDAC1 and phosphate carrier protein. J Biol Chem 283:8837–8845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. LaVoie HA, Whitfield NE, Shi B, King SR, Bose HS, Hui YY (2014) STARD6 is expressed in steroidogenic cells of the ovary and can enhance de novo steroidogenesis. Exp Biol Med (Maywood) 239:430–435

    Article  Google Scholar 

  56. Marriott KS, Prasad M, Thapliyal V, Bose HS (2012) Sigma-1 receptor at the mitochondrial-associated endoplasmic reticulum membrane is responsible for mitochondrial metabolic regulation. J Pharmacol Exp Ther 343:578–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Katsumata N, Horikawa R, Tanaka T (2006) Replacement of alanine with asparagic acid at position 203 in human steroidogenic acute regulatory protein impairs the ability to enhance steroidogenesis in vitro. Endocr J 53:427–431

    Article  CAS  PubMed  Google Scholar 

  58. Sugawara T, Fujimoto S (2004) The potential function of steroid sulphatase activity in steroid production and steroidogenic acute regulatory protein expression. Biochem J 380:153–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Baker BY, Lin L, Kim CJ, Raza J, Smith CP, Miller WL, Achermann JC (2006) Nonclassic congenital lipoid adrenal hyperplasia: a new disorder of the steroidogenic acute regulatory protein with very late presentation and normal male genitalia. J Clin Endocrinol Metab 91:4781–4785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bose HS, Lingappa VR, Miller WL (2002) Rapid regulation of steroidogenesis by mitochondrial protein import. Nature 417:87–91

    Article  CAS  PubMed  Google Scholar 

  61. Kim JM, Choi JH, Lee JH, Kim GH, Lee BH, Kim HS, Shin JH, Shin CH, Kim CJ, Yu J, Lee DY, Cho WK, Suh BK, Lee JE, Chung HR, Yoo HW (2011) High allele frequency of the p.Q258X mutation and identification of a novel mis-splicing mutation in the STAR gene in Korean patients with congenital lipoid adrenal hyperplasia. Eur J Endocrinol 165:771–778

    Article  CAS  PubMed  Google Scholar 

  62. Tee MK, Abramsohn M, Loewenthal N, Harris M, Siwach S, Kaplinsky A, Markus B, Birk O, Sheffield VC, Parvari R, Hershkovitz E, Miller WL (2013) Varied clinical presentations of seven patients with mutations in CYP11A1 encoding the cholesterol side-chain cleavage enzyme, P450scc. J Clin Endocrinol Metab 98:713–720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Rajapaksha M, Kaur J, Prasad M, Pawlak KJ, Marshall B, Perry EW, Whittal RM, Bose HS (2016) An outer mitochondrial translocase, Tom22, is crucial for inner mitochondrial steroidogenic regulation in adrenal and gonadal tissues. Mol Cell Biol 36:1032–1047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Nakae J, Tajima T, Sugawara T, Arakane F, Hanaki K, Hotsubo T, Igarashi N, Igarashi Y, Ishii T, Koda N, Kondo T, Kohno H, Nakagawa Y, Tachibana K, Takeshima Y, Tsubouchi K, Strauss JF 3rd, Fujieda K (1997) Analysis of the steroidogenic acute regulatory protein (StAR) gene in Japanese patients with congenital lipoid adrenal hyperplasia. Hum Mol Genet 6:571–576

    Article  CAS  PubMed  Google Scholar 

  65. Fluck CE, Pandey AV, Dick B, Camats N, Fernandez-Cancio M, Clemente M, Gussinye M, Carrascosa A, Mullis PE, Audi L (2011) Characterization of novel StAR (steroidogenic acute regulatory protein) mutations causing non-classic lipoid adrenal hyperplasia. PLoS One 6:e20178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Liu J, Rone MB, Papadopoulos V (2006) Protein-protein interactions mediate mitochondrial cholesterol transport and steroid biosynthesis. J Biol Chem 281:38879–38893

    Article  CAS  PubMed  Google Scholar 

  67. Bose HS, Lingappa VR, Miller WL (2002) The steroidogenic acute regulatory protein, StAR, works only at the outer mitochondrial membrane. Endocr Res 28:295–308

    Article  CAS  PubMed  Google Scholar 

  68. Kristian T, Hopkins IB, McKenna MC, Fiskum G (2006) Isolation of mitochondria with high respiratory control from primary cultures of neurons and astrocytes using nitrogen cavitation. J Neurosci Methods 152:136–143

    Article  CAS  PubMed  Google Scholar 

  69. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150:76–85

    Article  CAS  PubMed  Google Scholar 

  70. Simpson RJ (2008) Quantifying protein by bicinchoninic acid. CSH Protoc. pdb.prot4722

    Google Scholar 

  71. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J.Biol.Chem. 193:265–275

    CAS  PubMed  Google Scholar 

  72. Waterborg JH, Matthews HR (1994) The Lowry method for protein quantitation. Methods Mol Biol 32:1–4

    CAS  PubMed  Google Scholar 

  73. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  74. Harlow E, Lane D (2006) Bradford assay. CSH Protoc 2006. doi:10.1101/pdb.prot4644

  75. van der Pas R, Hofland LJ, Hofland J, Taylor AE, Arlt W, Steenbergen J, van Koetsveld PM, de Herder WW, de Jong FH, Feelders RA (2012) Fluconazole inhibits human adrenocortical steroidogenesis in vitro. J Endocrinol 215:403–412

    Article  PubMed  Google Scholar 

  76. Schloms L, Storbeck KH, Swart P, Gelderblom WC, Swart AC (2012) The influence of Aspalathus linearis (Rooibos) and dihydrochalcones on adrenal steroidogenesis: quantification of steroid intermediates and end products in H295R cells. J Steroid Biochem Mol Biol 128:128–138

    Article  CAS  PubMed  Google Scholar 

  77. Abdel-Khalik J, Bjorklund E, Hansen M (2013) Development of a solid phase extraction method for the simultaneous determination of steroid hormones in H295R cell line using liquid chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 935:61–69

    Article  CAS  PubMed  Google Scholar 

  78. Bose HS, Whittal RM, Huang MC, Baldwin MA, Miller WL (2000) N-218 MLN64, a protein with StAR-like steroidogenic activity, is folded and cleaved similarly to StAR. Biochemistry 39:11722–11731

    Article  CAS  PubMed  Google Scholar 

  79. Papadopoulos V, Guarneri P, Kreuger KE, Guidotti A, Costa E (1992) Pregnenolone biosynthesis in C6-2B glioma cell mitochondria: regulation by a mitochondrial diazepam binding inhibitor receptor. Proc Natl Acad Sci U S A 89:5113–5117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Sims NR, Anderson MF (2008) Isolation of mitochondria from rat brain using Percoll density gradient centrifugation. Nat Protoc 3:1228–1239

    Article  CAS  PubMed  Google Scholar 

  81. Clayton DA, Shadel GS (2014) Isolation of mitochondria from cells and tissues. Cold Spring Harb Protoc. pdb.top074542

    Google Scholar 

  82. Clayton DA, Shadel GS (2014) Purification of mitochondria by sucrose step density gradient centrifugation. Cold Spring Harb Protoc. pdb.prot080028

    Google Scholar 

  83. Clayton DA, Shadel GS (2014) Isolation of mitochondria from tissue culture cells. Cold Spring Harb Protoc. pdb.prot080002

    Google Scholar 

  84. Chen RF (1967) Removal of fatty acids from serum albumin by charcoal treatment. J Biol Chem 242:173–181

    CAS  PubMed  Google Scholar 

  85. Cao Z, West C, Norton-Wenzel CS, Rej R, Davis FB, Davis PJ, Rej R (2009) Effects of resin or charcoal treatment on fetal bovine serum and bovine calf serum. Endocr Res 34:101–108

    Article  PubMed  Google Scholar 

  86. Kushnir MM, Rockwood AL, Roberts WL, Yue B, Bergquist J, Meikle AW (2011) Liquid chromatography tandem mass spectrometry for analysis of steroids in clinical laboratories. Clin Biochem 44:77–88

    Article  CAS  PubMed  Google Scholar 

  87. Couchman L, Vincent RP, Ghataore L, Moniz CF, Taylor NF (2011) Challenges and benefits of endogenous steroid analysis by LC-MS/MS. Bioanalysis 3:2549–2572

    Article  CAS  PubMed  Google Scholar 

  88. Taylor AE, Keevil B, Huhtaniemi IT (2015) Mass spectrometry and immunoassay: how to measure steroid hormones today and tomorrow. Eur J Endocrinol 173:D1–12

    Article  CAS  PubMed  Google Scholar 

  89. Krone N, Hughes BA, Lavery GG, Stewart PM, Arlt W, Shackleton CH (2010) Gas chromatography/mass spectrometry (GC/MS) remains a pre-eminent discovery tool in clinical steroid investigations even in the era of fast liquid chromatography tandem mass spectrometry (LC/MS/MS). J Steroid Biochem Mol Biol 121:496–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Dr. Walter Miller (UCSF San Francisco, CA) for generously sharing the original F2-fusion expression vector and the critical reading of the manuscript. Our work on mitochondrial cholesterol import was supported by the Canadian Institutes of Health Research, the Dalhousie Medical Research Foundation, and the Nova Scotia Health Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Karten .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Kennedy, B.E., Charman, M., Karten, B. (2017). Measurement of Mitochondrial Cholesterol Import Using a Mitochondria-Targeted CYP11A1 Fusion Construct. In: Gelissen, I., Brown, A. (eds) Cholesterol Homeostasis. Methods in Molecular Biology, vol 1583. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6875-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6875-6_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6873-2

  • Online ISBN: 978-1-4939-6875-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics