Skip to main content

Poxvirus Safety Analysis in the Pregnant Mouse Model, Vaccinia, and Raccoonpox Viruses

  • Protocol
  • First Online:
Recombinant Virus Vaccines

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1581))

Abstract

Poxviruses cause many diseases in humans and animals worldwide, and there is a need for vaccines with improved safety and good efficacy. In addition, poxvirus vectors are widely used as recombinant vaccines for various infectious diseases and as recombinant and oncolytic vaccines for cancer. One concern with poxvirus vaccine vectors is that some poxviruses can infect a developing fetus and cause fetal loss or congenital disease. This can be an issue both for patients receiving a vaccine and for pregnant health care providers, including doctors, nurses, and veterinarians, who might receive accidental exposure to the poxvirus by injection or during patient care. We describe here a method for analyzing the safety of virus exposure in pregnant mammals using a mouse model testing vaccinia, canarypox, and raccoonpox virus vectors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mahalingam S, Damon IK, Lidbury BA (2004) 25 years since the eradication of smallpox: why poxvirus research is still relevant. Trends Immunol 25:636–639

    Article  CAS  PubMed  Google Scholar 

  2. Chen N, Li G, Liszewski MK et al (2005) Virulence differences between monkeypox virus isolates from West Africa and the Congo basin. Virology 340:46–63

    Article  CAS  PubMed  Google Scholar 

  3. McCollum AM, Damon IK (2014) Human monkeypox. Clin Infect Dis 58:260–267

    Article  PubMed  Google Scholar 

  4. Lederman ER, Reynolds MG, Karem K et al (2007) Prevalence of antibodies against orthopoxviruses among residents of Likouala region, Republic of Congo: evidence for monkeypox virus exposure. Am J Trop Med Hyg 77:1150–1156

    PubMed  Google Scholar 

  5. Lewis-Jones S (2004) Zoonotic poxvirus infections in humans. Curr Opin Infect Dis 17:81–89

    Article  PubMed  Google Scholar 

  6. Molino AC, Fleischer AB Jr, Feldman SR (2004) Patient demographics and utilization of health care services for molluscum contagiosum. Pediatr Dermatol 21:628–632

    Article  PubMed  Google Scholar 

  7. Senkevich TG, Koonin EV, Bugert JJ et al (1997) The genome of molluscum contagiosum virus: analysis and comparison with other poxviruses. Virology 233:19–42

    Article  CAS  PubMed  Google Scholar 

  8. Shchelkunov SN (2013) An increasing danger of zoonotic orthopoxvirus infections. PLoS Pathog 9:e1003756

    Article  PubMed  PubMed Central  Google Scholar 

  9. Damaso CR, Esposito JJ, Condit RC et al (2000) An emergent poxvirus from humans and cattle in Rio de Janeiro State: Cantagalo virus may derive from Brazilian smallpox vaccine. Virology 277:439–449

    Article  CAS  PubMed  Google Scholar 

  10. Oliveira DB, Assis FL, Ferreira PC et al (2013) Group 1 Vaccinia virus zoonotic outbreak in Maranhao State, Brazil. Am J Trop Med Hyg 89:1142–1145

    Article  PubMed  PubMed Central  Google Scholar 

  11. Dhar AD, Werchniak AE, Li Y et al (2004) Tanapox infection in a college student. N Engl J Med 350:361–366

    Article  CAS  PubMed  Google Scholar 

  12. Stich A, Meyer H, Kohler B et al (2002) Tanapox: first report in a European traveller and identification by PCR. Trans R Soc Trop Med Hyg 96:178–179

    Article  PubMed  Google Scholar 

  13. Kolhapure RM, Deolankar RP, Tupe CD et al (1997) Investigation of buffalopox outbreaks in Maharashtra State during 1992–1996. Indian J Med Res 106:441–446

    CAS  PubMed  Google Scholar 

  14. Campbell CT, Gulley JL, Oyelaran O et al (2013) Serum antibodies to blood group A predict survival on PROSTVAC-VF. Clin Cancer Res 19:1290–1299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hui EP, Taylor GS, Jia H et al (2013) Phase I trial of recombinant modified vaccinia ankara encoding Epstein-Barr viral tumor antigens in nasopharyngeal carcinoma patients. Cancer Res 73:1676–1688

    Article  CAS  PubMed  Google Scholar 

  16. Gomez CE, Najera JL, Krupa M et al (2008) The poxvirus vectors MVA and NYVAC as gene delivery systems for vaccination against infectious diseases and cancer. Curr Gene Ther 8:97–120

    Article  CAS  PubMed  Google Scholar 

  17. Rerks-Ngarm S, Pitisuttithum P, Nitayaphan S et al (2009) Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. N Engl J Med 361:2209–2220

    Article  CAS  PubMed  Google Scholar 

  18. Tscharke DC, Karupiah G, Zhou J et al (2005) Identification of poxvirus CD8+ T cell determinants to enable rational design and characterization of smallpox vaccines. J Exp Med 201:95–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jones-Trower A, Garcia A, Meseda CA et al (2005) Identification and preliminary characterization of vaccinia virus (Dryvax) antigens recognized by vaccinia immune globulin. Virology 343:128–140

    Article  CAS  PubMed  Google Scholar 

  20. Hersperger AR, Siciliano NA, DeHaven BC et al (2014) Epithelial immunization induces polyfunctional CD8+ T cells and optimal mousepox protection. J Virol 88:9472–9475

    Article  PubMed  PubMed Central  Google Scholar 

  21. Guzman E, Cubillos-Zapata C, Cottingham MG et al (2012) Modified vaccinia virus Ankara-based vaccine vectors induce apoptosis in dendritic cells draining from the skin via both the extrinsic and intrinsic caspase pathways, preventing efficient antigen presentation. J Virol 86:5452–5466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Weltzin R, Liu J, Pugachev KV et al (2003) Clonal vaccinia virus grown in cell culture as a new smallpox vaccine. Nat Med 9:1125–1130

    Article  CAS  PubMed  Google Scholar 

  23. Hatch GJ, Graham VA, Bewley KR et al (2013) Assessment of the protective effect of Imvamune and Acam2000 vaccines against aerosolized monkeypox virus in cynomolgus macaques. J Virol 87:7805–7815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Belyakov IM, Earl P, Dzutsev A et al (2003) Shared modes of protection against poxvirus infection by attenuated and conventional smallpox vaccine viruses. Proc Natl Acad Sci U S A 100:9458–9463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Earl PL, Americo JL, Wyatt LS et al (2004) Immunogenicity of a highly attenuated MVA smallpox vaccine and protection against monkeypox. Nature 428:182–185

    Article  CAS  PubMed  Google Scholar 

  26. Evgin L, Vaha-Koskela M, Rintoul J et al (2010) Potent oncolytic activity of raccoonpox virus in the absence of natural pathogenicity. Mol Ther 18:896–902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jones GJ, Boles C, Roper RL (2014) Raccoonpoxvirus safety in immunocompromised and pregnant mouse models. Vaccine 32:3977–3981

    Article  PubMed  Google Scholar 

  28. Herman YF (1964) Isolation and characterization of a naturally occurring poxvirus in racoons. Bacteriol Proc 64th Annu Meeting Am Soc Microbiol, 17.

    Google Scholar 

  29. DeMartini JC, Bickle HM, Brodie SJ et al (1993) Raccoon poxvirus rabies virus glycoprotein recombinant vaccine in sheep. Arch Virol 133:211–222

    Article  CAS  PubMed  Google Scholar 

  30. Esposito JJ (1989) Live poxvirus-vectored vaccines in wildlife immunization programmes, the rabies paradigm. Res Virol 140:480–491

    Article  CAS  PubMed  Google Scholar 

  31. Fekadu M, Shaddock JH, Sumner JW et al (1991) Oral vaccination of skunks with raccoon poxvirus recombinants expressing the rabies glycoprotein or the nucleoprotein. J Wildl Dis 27:681–684

    Article  CAS  PubMed  Google Scholar 

  32. Hu L, Ngichabe C, Trimarchi CV et al (1997) Raccoon poxvirus live recombinant feline panleukopenia virus VP2 and rabies virus glycoprotein bivalent vaccine. Vaccine 15:1466–1472

    Article  CAS  PubMed  Google Scholar 

  33. Lodmell DL, Sumner JW, Esposito JJ et al (1991) Raccoon poxvirus recombinants expressing the rabies virus nucleoprotein protect mice against lethal rabies virus infection. J Virol 65:3400–3405

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Osorio JE, Frank RS, Moss K et al (2003) Raccoon poxvirus as a mucosal vaccine vector for domestic cats. J Drug Target 11:463–470

    Article  CAS  PubMed  Google Scholar 

  35. Fleischauer C, Upton C, Victoria J et al (2015) Genome sequence and comparative virulence of raccoonpox virus: the first north American poxvirus sequence. J Gen Virol 96:2806–2821

    Article  CAS  PubMed  Google Scholar 

  36. Benning N, Hassett DE (2004) Vaccinia virus infection during murine pregnancy: a new pathogenesis model for vaccinia fetalis. J Virol 78:3133–3139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Roper RL (2006) Characterization of the vaccinia virus A35R protein and its role in virulence. J Virol 80:306–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rehm KE, Connor RF, Jones GJ et al (2010) Vaccinia virus A35R inhibits MHC class II antigen presentation. Virology 397:176–186

    Article  CAS  PubMed  Google Scholar 

  39. Rehm KE, Jones GJ, Tripp AA et al (2010) The poxvirus A35 protein is an immunoregulator. J Virol 84:418–425

    Article  CAS  PubMed  Google Scholar 

  40. Rehm KE, Roper RL (2011) Deletion of the A35 gene from Modified Vaccinia Virus Ankara increases immunogenicity and isotype switching. Vaccine 29:3276–3283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The author wishes to thank Gwendolyn JB Jones and Rishita Yeduri for assistance with the manuscript preparation and to acknowledge funding from Boehringer Ingelheim, Inc. and the National Institutes of Health (1R01AI110542 and R15AT006122).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel L. Roper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Roper, R.L. (2017). Poxvirus Safety Analysis in the Pregnant Mouse Model, Vaccinia, and Raccoonpox Viruses. In: Ferran, M., Skuse, G. (eds) Recombinant Virus Vaccines. Methods in Molecular Biology, vol 1581. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6869-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6869-5_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6867-1

  • Online ISBN: 978-1-4939-6869-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics