Skip to main content

An Assessment of the Next Generation of Animal miRNA Target Prediction Algorithms

  • Protocol
  • First Online:
MicroRNA Detection and Target Identification

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1580))

Abstract

The advent of genome-wide next-generation sequencing technologies has revolutionized the genomic and transcriptomic fields. New technologies also present an opportunity for greater discovery and understanding of post-transcriptional processes, in particular, translational inhibition of transcripts by miRBP (microRNA-RNA binding protein) complexes. Not only have novel methodologies been developed for the direct sequencing of RBP-bound RNA, but a new class of miRNA (microRNA) target prediction algorithms trained on this data has emerged. In this article, we will explore and evaluate the next generation of animal miRNA target prediction algorithms, their relationship to more traditional prediction methods, and the implications of such methodologies for the future of miRNA target prediction and miRNA research as a whole.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Friedman RC, Farh KKH, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19(1):92–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chi SW, Zang JB, Mele A, Darnell RB (2009) Argonaute HITS-CLIP decodes microRNA–mRNA interaction maps. Nature 460(7254):479–486

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Hafner M, Landthaler M, Burger L, Khorshid M, Hausser J, Berninger P, Rothballer A, Ascano M, Jungkamp AC, Munschauer M, Ulrich A (2010) Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141(1):129–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Helwak A, Kudla G, Dudnakova T, Tollervey D (2013) Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding. Cell 153(3):654–665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Grosswendt S, Filipchyk A, Manzano M, Klironomos F, Schilling M, Herzog M, Gottwein E, Rajewsky N (2014) Unambiguous identification of miRNA: target site interactions by different types of ligation reactions. Mol Cell 54(6):1042–1054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Moore MJ, Scheel TK, Luna JM, Park CY, Fak JJ, Nishiuchi E, Rice CM, Darnell RB (2015) miRNA-target chimeras reveal miRNA 3 [prime]-end pairing as a major determinant of Argonaute target specificity. Nat Commun 6

    Google Scholar 

  8. Sandberg R, Neilson JR, Sarma A, Sharp PA, Burge CB (2008) Proliferating cells express mRNAs with shortened 3'untranslated regions and fewer microRNA target sites. Science 320(5883):1643–1647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ameres SL, Zamore PD (2013) Diversifying microRNA sequence and function. Nat Rev Mol Cell Biol 14(8):475–488

    Article  CAS  PubMed  Google Scholar 

  10. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5):843–854

    Article  CAS  PubMed  Google Scholar 

  11. Wightman B, Ha I, Ruvkun G (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75(5):855–862

    Article  CAS  PubMed  Google Scholar 

  12. Kiriakidou M, Nelson PT, Kouranov A, Fitziev P, Bouyioukos C, Mourelatos Z, Hatzigeorgiou A (2004) A combined computational-experimental approach predicts human microRNA targets. Genes Dev 18(10):1165–1178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Betel D, Koppal A, Agius P, Sander C, Leslie C (2010) Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites. Genome Biol 11(8):R90

    Article  PubMed  PubMed Central  Google Scholar 

  14. Enright AJ, John B, Gaul U, Tuschl T, Sander C, Marks DS (2004) MicroRNA targets in Drosophila. Genome Biol 5(1):R1–R1

    Article  Google Scholar 

  15. John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS (2004) Human microRNA targets. PLoS Biol 2(11):e363

    Article  PubMed  PubMed Central  Google Scholar 

  16. Betel D, Wilson M, Gabow A, Marks DS, Sander C (2008) The microRNA. org resource: targets and expression. Nucleic Acids Res 36(suppl 1):D149–D153

    CAS  PubMed  Google Scholar 

  17. Agarwal V, Bell GW, Nam JW, Bartel DP (2015) Predicting effective microRNA target sites in mammalian mRNAs. Elife 4:e05005

    Article  PubMed Central  Google Scholar 

  18. Grimson A, Farh KKH, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP (2007) MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 27(1):91–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Garcia DM, Baek D, Shin C, Bell GW, Grimson A, Bartel DP (2011) Weak seed-pairing stability and high target-site abundance decrease the proficiency of lsy-6 and other microRNAs. Nat Struct Mol Biol 18(10):1139–1146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Khorshid M, Hausser J, Zavolan M, van Nimwegen E (2013) A biophysical miRNA-mRNA interaction model infers canonical and noncanonical targets. Nat Methods 10(3):253–255

    Article  CAS  PubMed  Google Scholar 

  21. Gumienny R, Zavolan M (2015) Accurate transcriptome-wide prediction of microRNA targets and small interfering RNA off-targets with MIRZA-G. Nucleic Acids Res 43(3):1380–1391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Reczko M, Maragkakis M, Alexiou P, Grosse I, Hatzigeorgiou AG (2012) Functional microRNA targets in protein coding sequences. Bioinformatics 28(6):771–776

    Article  CAS  PubMed  Google Scholar 

  23. Wang X (2016) Improving microRNA target prediction by modeling with unambiguously identified microRNA-target pairs from CLIP-Ligation studies. Bioinformatics 32(9):1316–1322

    Article  CAS  PubMed  Google Scholar 

  24. Vlachos IS, Paraskevopoulou MD, Karagkouni D, Georgakilas G, Vergoulis T, Kanellos I, Anastasopoulos IL, Maniou S, Karathanou K, Kalfakakou D, Fevgas A (2015) DIANA-TarBase v7. 0: indexing more than half a million experimentally supported miRNA: mRNA interactions. Nucleic Acids Res 43(D1):D153–D159

    Article  PubMed  Google Scholar 

  25. Yang JH, Li JH, Shao P, Zhou H, Chen YQ, Qu LH (2011) starBase: a database for exploring microRNA–mRNA interaction maps from Argonaute CLIP-Seq and Degradome-Seq data. Nucleic Acids Res 39(suppl 1):D202–D209

    Article  CAS  PubMed  Google Scholar 

  26. Li JH, Liu S, Zhou H, Qu LH, Yang JH (2013) starBase v2. 0: decoding miRNA-ceRNA, miRNA-ncRNA and protein–RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res 42:D92–D97

    Article  PubMed  PubMed Central  Google Scholar 

  27. Krützfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, Stoffel M (2005) Silencing of microRNAs in vivo with ‘antagomirs’. Nature 438(7068):685–689

    Article  PubMed  Google Scholar 

  28. Wang T, Xie Y, Xiao G (2014) dCLIP: a computational approach for comparative CLIP-seq analyses. Genome Biol 15(1):1

    Article  Google Scholar 

  29. Miranda KC, Huynh T, Tay Y, Ang YS, Tam WL, Thomson AM, Lim B, Rigoutsos I (2006) A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell 126(6):1203–1217

    Article  CAS  PubMed  Google Scholar 

  30. Baek D, Villén J, Shin C, Camargo FD, Gygi SP, Bartel DP (2008) The impact of microRNAs on protein output. Nature 455(7209):64–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Loeb GB, Khan AA, Canner D, Hiatt JB, Shendure J, Darnell RB, Leslie CS, Rudensky AY (2012) Transcriptome-wide miR-155 binding map reveals widespread noncanonical microRNA targeting. Mol Cell 48(5):760–770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Seok H, Ham J, Jang ES, Chi SW (2016) MicroRNA target recognition: insights from transcriptome-wide non-canonical interactions. Mol Cells 39(5):375–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bazzini AA, Lee MT, Giraldez AJ (2012) Ribosome profiling shows that miR-430 reduces translation before causing mRNA decay in zebrafish. Science 336(6078):233–237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lee YS, Shibata Y, Malhotra A, Dutta A (2009) A novel class of small RNAs: tRNA-derived RNA fragments (tRFs). Genes Dev 23(22):2639–2649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang Q, Lee I, Ren J, Ajay SS, Lee YS, Bao X (2013) Identification and functional characterization of tRNA-derived RNA fragments (tRFs) in respiratory syncytial virus infection. Mol Ther 21(2):368–379

    Article  CAS  PubMed  Google Scholar 

  36. Cole C, Sobala A, Lu C, Thatcher SR, Bowman A, Brown JW, Green PJ, Barton GJ, Hutvagner G (2009) Filtering of deep sequencing data reveals the existence of abundant Dicer-dependent small RNAs derived from tRNAs. RNA 15(12):2147–2160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Haussecker D, Huang Y, Lau A, Parameswaran P, Fire AZ, Kay MA (2010) Human tRNA-derived small RNAs in the global regulation of RNA silencing. RNA 16(4):673–695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Morozova N, Zinovyev A, Nonne N, Pritchard LL, Gorban AN, Harel-Bellan A (2012) Kinetic signatures of microRNA modes of action. RNA 18(9):1635–1655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Forsyth R (1988) Machine learning: Principles and techniques. Chapman & Hall Ltd., New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Moxon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Bradley, T., Moxon, S. (2017). An Assessment of the Next Generation of Animal miRNA Target Prediction Algorithms. In: Dalmay, T. (eds) MicroRNA Detection and Target Identification. Methods in Molecular Biology, vol 1580. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6866-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6866-4_13

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6864-0

  • Online ISBN: 978-1-4939-6866-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics