Utilization of Selenocysteine for Site-Specific Antibody Conjugation

Part of the Methods in Molecular Biology book series (MIMB, volume 1575)

Abstract

Site-specific conjugation methods are becoming increasingly important in building next-generation antibody-drug conjugates. We have developed a site-specific conjugation technology based on monoclonal antibodies with engineered selenocysteine (Sec) residues, named selenomabs. Here, we provide protocols for the engineering, expression, and purification of selenomabs in single-chain variable fragment (scFv)-Fc format. Methods for selective conjugation of selenomabs to selenol-reactive compounds and analytical characterization of selenomab conjugates are also included.

Key words

Antibody-drug conjugates Site-specific conjugation Selenomab Selenocysteine 

References

  1. 1.
    Chari RV, Miller ML, Widdison WC (2014) Antibody-drug conjugates: an emerging concept in cancer therapy. Angew Chem Int Ed Engl 53:3796–3827CrossRefPubMedGoogle Scholar
  2. 2.
    de Goeij BE, Lambert JM (2016) New developments for antibody-drug conjugate-based therapeutic approaches. Curr Opin Immunol 40:14–23CrossRefPubMedGoogle Scholar
  3. 3.
    Sassoon I, Blanc V (2013) Antibody-drug conjugate (ADC) clinical pipeline: a review. Methods Mol Biol 1045:1–27CrossRefPubMedGoogle Scholar
  4. 4.
    Adair JR, Howard PW, Hartley JA, Williams DG, Chester KA (2012) Antibody-drug conjugates—a perfect synergy. Expert Opn Biol Ther 12:1191–1206CrossRefGoogle Scholar
  5. 5.
    Sievers EL, Senter PD (2013) Antibody-drug conjugates in cancer therapy. Annu Rev Med 64:15–29CrossRefPubMedGoogle Scholar
  6. 6.
    Lewis Phillips GD, Li G, Dugger DL, Crocker LM, Parsons KL, Mai E, Blattler WA, Lambert JM, Chari RV, Lutz RJ, Wong WL, Jacobson FS, Koeppen H, Schwall RH, Kenkare-Mitra SR, Spencer SD, Sliwkowski MX (2008) Targeting HER2-positive breast cancer with trastuzumab-DM1, an antibody-cytotoxic drug conjugate. Cancer Res 68:9280–9290CrossRefPubMedGoogle Scholar
  7. 7.
    Doronina SO, Toki BE, Torgov MY, Mendelsohn BA, Cerveny CG, Chace DF, DeBlanc RL, Gearing RP, Bovee TD, Siegall CB, Francisco JA, Wahl AF, Meyer DL, Senter PD (2003) Development of potent monoclonal antibody auristatin conjugates for cancer therapy. Nat Biotechnol 21:778–784CrossRefPubMedGoogle Scholar
  8. 8.
    Hamblett KJ, Senter PD, Chace DF, Sun MM, Lenox J, Cerveny CG, Kissler KM, Bernhardt SX, Kopcha AK, Zabinski RF, Meyer DL, Francisco JA (2004) Effects of drug loading on the antitumor activity of a monoclonal antibody drug conjugate. Clin Cancer Res 10:7063–7070CrossRefPubMedGoogle Scholar
  9. 9.
    Boswell CA, Mundo EE, Zhang C, Bumbaca D, Valle NR, Kozak KR, Fourie A, Chuh J, Koppada N, Saad O, Gill H, Shen BQ, Rubinfeld B, Tibbitts J, Kaur S, Theil FP, Fielder PJ, Khawli LA, Lin K (2011) Impact of drug conjugation on pharmacokinetics and tissue distribution of anti-STEAP1 antibody-drug conjugates in rats. Bioconjug Chem 22:1994–2004CrossRefPubMedGoogle Scholar
  10. 10.
    Junutula JR, Raab H, Clark S, Bhakta S, Leipold DD, Weir S, Chen Y, Simpson M, Tsai SP, Dennis MS, Lu Y, Meng YG, Ng C, Yang J, Lee CC, Duenas E, Gorrell J, Katta V, Kim A, McDorman K, Flagella K, Venook R, Ross S, Spencer SD, Lee Wong W, Lowman HB, Vandlen R, Sliwkowski MX, Scheller RH, Polakis P, Mallet W (2008) Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index. Nat Biotechnol 26:925–932CrossRefPubMedGoogle Scholar
  11. 11.
    Panowksi S, Bhakta S, Raab H, Polakis P, Junutula JR (2014) Site-specific antibody drug conjugates for cancer therapy. MAbs 6:34–45CrossRefGoogle Scholar
  12. 12.
    Hofer T, Thomas JD, Burke TR Jr, Rader C (2008) An engineered selenocysteine defines a unique class of antibody derivatives. Proc Natl Acad Sci U S A 105:12451–12456CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Hofer T, Skeffington LR, Chapman CM, Rader C (2009) Molecularly defined antibody conjugation through a selenocysteine interface. Biochemistry 48:12047–12057CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Cui H, Thomas JD, Burke TR Jr, Rader C (2012) Chemically programmed bispecific antibodies that recruit and activate T cells. J Biol Chem 287:28206–28214CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Vire B, Skarzynski M, Thomas JD, Nelson CG, David A, Aue G, Burke TR Jr, Rader C, Wiestner A (2014) Harnessing the fcmu receptor for potent and selective cytotoxic therapy of chronic lymphocytic leukemia. Cancer Res 74:7510–7520CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Hatfield DL, Gladyshev VN (2002) How selenium has altered our understanding of the genetic code. Mol Cell Biol 22:3565–3576CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Kryukov GV, Castellano S, Novoselov SV, Lobanov AV, Zehtab O, Guigo R, Gladyshev VN (2003) Characterization of mammalian selenoproteomes. Science 300:1439–1443CrossRefPubMedGoogle Scholar
  18. 18.
    Labunskyy VM, Hatfield DL, Gladyshev VN (2014) Selenoproteins: molecular pathways and physiological roles. Physiol Rev 94:739–777CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Li X, Patterson JT, Sarkar M, Pedzisa L, Kodadek T, Roush WR, Rader C (2015) Site-specific dual antibody conjugation via engineered cysteine and selenocysteine residues. Bioconjug Chem 26:2243–2248CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Novoselov SV, Lobanov AV, Hua D, Kasaikina MV, Hatfield DL, Gladyshev VN (2007) A highly efficient form of the selenocysteine insertion sequence element in protozoan parasites and its use in mammalian cells. Proc Natl Acad Sci U S A 104:7857–7862CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Yang J, Rader C (2012) Cloning, expression, and purification of monoclonal antibodies in scFv-Fc format. Methods Mol Biol 901:209–232CrossRefPubMedGoogle Scholar
  22. 22.
    Pedzisa L, Li X, Rader C, Roush WR (2016) Assessment of reagents for selenocysteine conjugation and the stability of selenocysteine adducts. Org Biomol Chem 14:5141–5147CrossRefPubMedGoogle Scholar
  23. 23.
    Patterson JT, Asano S, Li X, Rader C, Barbas CF III. (2014) Improving the serum stability of site-specific antibody conjugates with sulfone linkers. Bioconjug Chem 25:1402–1407CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Carter P, Presta L, Gorman CM, Ridgway JB, Henner D, Wong WL, Rowland AM, Kotts C, Carver ME, Shepard HM (1992) Humanization of an anti-p185HER2 antibody for human cancer therapy. Proc Natl Acad Sci U S A 89:4285–4289CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Department of Cancer BiologyThe Scripps Research InstituteJupiterUSA
  2. 2.Department of Molecular TherapeuticsThe Scripps Research InstituteJupiterUSA

Personalised recommendations