High-Throughput IgG Conversion of Phage Displayed Fab Antibody Fragments by AmplYFast

  • Andrea Sterner
  • Carolin Zehetmeier
Part of the Methods in Molecular Biology book series (MIMB, volume 1575)


Phage display of antibody libraries is an invaluable strategy in antibody discovery. Many synthetic antibody library formats utilize monovalent antibody binding fragments (Fab), displayed on filamentous phage and expressed in Escherichia coli for selection and screening procedures, respectively. For most therapeutic applications, however, the final antibody candidate favors a bivalent immunoglobulin G (IgG) format, due to its particular effector function, half-life, and avidity.

Here, we present an optimized subcloning method, termed AmplYFast, for the fast and convenient conversion of phage-displayed monovalent Fab fragments into full-length IgG or immunoglobulins of any other isotype. By using biotinylated primers, unique mammalian expression vectors, and multi-well plates, AmplYFast combines the rapid amplification, digestion, and ligation of recombinant Ig heavy and light chain sequences in an easy-to-operate high-throughput manner. Thus, AmplYFast improves quality and efficiency in DNA cloning and significantly minimizes timelines to antibody lead identification.

Key words

Immunoglobulin Phage display IgG Fab DNA cloning Biotinylated primer Recombinant antibody 



The authors like to thank Stephanie Patzelt and Christoph Erkel for their support and scientific discussions, as well as Thomas Tiller and Katja Siegers for comments on the manuscript.


  1. 1.
    Bradbury ARM, Marks JD (2004) Antibodies from phage antibody libraries. J Immunol Methods 290(1–2):29–49. doi: 10.1016/j.jim.2004.04.007 CrossRefPubMedGoogle Scholar
  2. 2.
    Hoogenboom HR (2002) Overview of antibody phage-display technology and its applications. Methods Mol Biol 178:1–37PubMedGoogle Scholar
  3. 3.
    Weber M, Bujak E, Putelli A et al (2014) A highly functional synthetic phage display library containing over 40 billion human antibody clones. PLoS One 9(6):e100000. doi: 10.1371/journal.pone.0100000 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Rothe C, Urlinger S, Löhning C et al (2008) The human combinatorial antibody library HuCAL GOLD combines diversification of all six CDRs according to the natural immune system with a novel display method for efficient selection of high-affinity antibodies. J Mol Biol 376(4):1182–1200. doi: 10.1016/j.jmb.2007.12.018 CrossRefPubMedGoogle Scholar
  5. 5.
    Prassler J, Thiel S, Pracht C et al (2011) HuCAL PLATINUM, a synthetic Fab library optimized for sequence diversity and superior performance in mammalian expression systems. J Mol Biol 413(1):261–278. doi: 10.1016/j.jmb.2011.08.012 CrossRefPubMedGoogle Scholar
  6. 6.
    Li K, Zettlitz KA, Lipianskaya J et al (2015) A fully human scFv phage display library for rapid antibody fragment reformatting. Protein Eng Des Sel 28(10):307–316. doi: 10.1093/protein/gzv024 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Hoet RM, Cohen EH, Kent RB et al (2005) Generation of high-affinity human antibodies by combining donor-derived and synthetic complementarity-determining-region diversity. Nat Biotechnol 23(3):344–348. doi: 10.1038/nbt1067 CrossRefPubMedGoogle Scholar
  8. 8.
    Miersch S, Sidhu SS (2012) Synthetic antibodies: concepts, potential and practical considerations. Methods 57(4):486–498. doi: 10.1016/j.ymeth.2012.06.012 CrossRefPubMedGoogle Scholar
  9. 9.
    Ponsel D, Neugebauer J, Ladetzki-Baehs K et al (2011) High affinity, developability and functional size: the holy grail of combinatorial antibody library generation. Molecules 16(12):3675–3700. doi: 10.3390/molecules16053675 CrossRefPubMedGoogle Scholar
  10. 10.
    Tiller T, Schuster I, Deppe D et al (2014) A fully synthetic human Fab antibody library based on fixed VH/VL framework pairings with favorable biophysical properties. MAbs 5(3):445–470. doi: 10.4161/mabs.24218 CrossRefGoogle Scholar
  11. 11.
    Krebs B, Rauchenberger R, Reiffert S et al (2001) High-throughput generation and engineering of recombinant human antibodies. J Immunol Methods 254(1–2):67–84CrossRefPubMedGoogle Scholar
  12. 12.
    Slater GW, Kist TB, Ren H et al (1998) Recent developments in DNA electrophoretic separations. Electrophoresis 19(10):1525–1541. doi: 10.1002/elps.1150191003 CrossRefPubMedGoogle Scholar
  13. 13.
    Kalle E, Gulevich A, Rensing C (2013) External and semi-internal controls for PCR amplification of homologous sequences in mixed templates. J Microbiol Methods 95(2):285–294. doi: 10.1016/j.mimet.2013.09.014 CrossRefPubMedGoogle Scholar
  14. 14.
    Gallagher SR, Desjardins PR (2001) Quantitation of DNA and RNA with Absorption and Fluorescence Spectroscopy. In: Haines JL, Korf BR, Morton CC et al (eds) Current protocols in human genetics. John Wiley & Sons, Inc., Hoboken, NJGoogle Scholar
  15. 15.
    Dieffenbach CW, Dveksler GS (1993) Setting up a PCR laboratory. Genome Res 3(2):S2–S7. doi: 10.1101/gr.3.2.S2 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.MorphoSys AGPlaneggGermany

Personalised recommendations