Whole Cell Panning with Phage Display

  • Yvonne Stark
  • Sophie Venet
  • Annika Schmid
Part of the Methods in Molecular Biology book series (MIMB, volume 1575)


Phage display has emerged as one of the leading technologies for the selection of highly specific monoclonal antibodies, offering a number of advantages over traditional methods of antibody generation. While there are various possibilities to conduct phage display (e.g., solution panning, solid-phase panning), whole cell panning is an elegant way to present membrane embedded target antigens in their natural environment and conformation to antibody-bearing phages. Here, a whole cell panning procedure using a Fab-based antibody library including primary cell based screening for selectivity is described.

Key words

Antibody fragment Phage display Antibody library Whole cell panning (WCP) 


  1. 1.
    Hewlett RT (1903) Serum therapy: bacterial therapeutics and vaccines. Churchill, LondonGoogle Scholar
  2. 2.
    Smith GP (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228(4705):1315–1317CrossRefPubMedGoogle Scholar
  3. 3.
    McCafferty J, Griffiths AD, Winter G, Chiswell DJ (1990) Phage antibodies: filamentous phage displaying antibody variable domains. Nature 348(6301):552–554CrossRefPubMedGoogle Scholar
  4. 4.
    Wang XX, Shusta EV (2005) The use of scFv-displaying yeast in mammalian cell surface selections. J Immunol Methods 304(1–2):30–42. doi: 10.1016/j.jim.2005.05.006 CrossRefPubMedGoogle Scholar
  5. 5.
    Amstutz P, Forrer P, Zahnd C, Pluckthun A (2001) In vitro display technologies: novel developments and applications. Curr Opin Biotechnol 12(4):400–405CrossRefPubMedGoogle Scholar
  6. 6.
    Fuchs P, Breitling F, Dubel S, Seehaus T, Little M (1991) Targeting recombinant antibodies to the surface of Escherichia coli: fusion to a peptidoglycan associated lipoprotein. Nat Biotechnol 9(12):1369–1372. doi: 10.1038/nbt1291-1369 CrossRefGoogle Scholar
  7. 7.
    Michelfelder S, Lee M, deLima-Hahn E, Wilmes T, Kaul F, Müller O, Kleinschmidt JA, Trepel M (2007) Vectors selected from adeno-associated viral display peptide libraries for leukemia cell-targeted cytotoxic gene therapy. Exp Hematol 35(12):1766–1776. doi: 10.1016/j.exphem.2007.07.018 CrossRefPubMedGoogle Scholar
  8. 8.
    He M, Taussig MJ (1997) Antibody-ribosome-mRNA (ARM) complexes as efficient selection particles for in vitro display and evolution of antibody combining sites. Nucleic Acids Res 25(24):5132–5134CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Bradbury AR, Sidhu S, Dubel S, McCafferty J (2011) Beyond natural antibodies: the power of in vitro display technologies. Nat Biotechnol 29(3):245–254. doi: 10.1038/nbt.1791 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Harel Inbar N, Benhar I (2012) Selection of antibodies from synthetic antibody libraries. Arch Biochem Biophys 526(2):87–98. doi: 10.1016/ CrossRefPubMedGoogle Scholar
  11. 11.
    Miersch S, Sidhu SS (2012) Synthetic antibodies: concepts, potential and practical considerations. Methods 57(4):486–498. doi: 10.1016/j.ymeth.2012.06.012 CrossRefPubMedGoogle Scholar
  12. 12.
    Vaughan TJ, Williams AJ, Pritchard K, Osbourn JK, Pope AR, Earnshaw JC, McCafferty J, Hodits RA, Wilton J, Johnson KS (1996) Human antibodies with sub-nanomolar affinities isolated from a large non-immunized phage display library. Nat Biotechnol 14(3):309–314. doi: 10.1038/nbt0396-309 CrossRefPubMedGoogle Scholar
  13. 13.
    Tiller T, Schuster I, Deppe D, Siegers K, Strohner R, Herrmann T, Berenguer M, Poujol D, Stehle J, Stark Y, Hessling M, Daubert D, Felderer K, Kaden S, Kolln J, Enzelberger M, Urlinger S (2013) A fully synthetic human Fab antibody library based on fixed VH/VL framework pairings with favorable biophysical properties. MAbs 5(3):445–470CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Rothe C, Urlinger S, Lohning C, Prassler J, Stark Y, Jager U, Hubner B, Bardroff M, Pradel I, Boss M, Bittlingmaier R, Bataa T, Frisch C, Brocks B, Honegger A, Urban M (2008) The human combinatorial antibody library HuCAL GOLD combines diversification of all six CDRs according to the natural immune system with a novel display method for efficient selection of high-affinity antibodies. J Mol Biol 376(4):1182–1200. doi: 10.1016/j.jmb.2007.12.018 CrossRefPubMedGoogle Scholar
  15. 15.
    Knappik A, Ge L, Honegger A, Pack P, Fischer M, Wellnhofer G, Hoess A, Wolle J, Pluckthun A, Virnekas B (2000) Fully synthetic human combinatorial antibody libraries (HuCAL) based on modular consensus frameworks and CDRs randomized with trinucleotides. J Mol Biol 296(1):57–86. doi: 10.1006/jmbi.1999.3444 CrossRefPubMedGoogle Scholar
  16. 16.
    van den Brulle J, Fischer M, Langmann T, Horn G, Waldmann T, Arnold S, Fuhrmann M, Schatz O, O’Connell T, O’Connell D, Auckenthaler A, Schwer H (2008) A novel solid phase technology for high-throughput gene synthesis. Biotechniques 45(3):340–343CrossRefPubMedGoogle Scholar
  17. 17.
    Chun E, Thompson AA, Liu W, Roth CB, Griffith MT, Katritch V, Kunken J, Xu F, Cherezov V, Hanson MA, Stevens RC (2012) Fusion partner toolchest for the stabilization and crystallization of G protein-coupled receptors. Structure 20(6):967–976. doi: 10.1016/j.str.2012.04.010 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Robertson N, Jazayeri A, Errey J, Baig A, Hurrell E, Zhukov A, Langmead CJ, Weir M, Marshall FH (2011) The properties of thermostabilised G protein-coupled receptors (StaRs) and their use in drug discovery. Neuropharmacology 60(1):36–44. doi: 10.1016/j.neuropharm.2010.07.001 CrossRefPubMedGoogle Scholar
  19. 19.
    Burton DR, Scott JK, Silverman GJ (2001) Phage Display Cold Spring Harb Press, Cold Spring Harbor, NY, USAGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.MorphoSys AGPlaneggGermany

Personalised recommendations