Cell and Tissue Imaging with Molecularly Imprinted Polymers

  • Maria Panagiotopoulou
  • Stephanie Kunath
  • Karsten Haupt
  • Bernadette Tse Sum Bui
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1575)

Abstract

Advanced tools for cell imaging are of particular interest as they can detect, localize and quantify molecular targets like abnormal glycosylation sites that are biomarkers of cancer and infection. Targeting these biomarkers is often challenging due to a lack of receptor materials. Molecularly imprinted polymers (MIPs) are promising artificial receptors; they can be tailored to bind targets specifically, be labeled easily, and are physically and chemically stable. Herein, we demonstrate the application of MIPs as artificial antibodies for selective labeling and imaging of cellular targets, on the example of hyaluronan and sialylation moieties on fixated human skin cells and tissues. Thus, fluorescently labeled MIP nanoparticles templated with glucuronic acid (MIPGlcA) and N-acetylneuraminic acid (MIPNANA) are respectively applied. Two different fluorescent probes are used: (1) MIPGlcA particles, ~400 nm in size are labeled with the dye rhodamine that target the extracellular hyaluronan on cells and tissue specimens and (2) MIP-coated InP/ZnS quantum dots (QDs) of two different colors, ~125 nm in size that target the extracellular and intracellular hyaluronan and sialylation sites. Green and red emitting QDs are functionalized with MIPGlcA and MIPNANA respectively, enabling multiplexed cell imaging. This is a general approach that can also be adapted to other target molecules on and in cells.

Key words

Molecularly imprinted polymers MIPs Artificial antibodies Glucuronic acid Hyaluronic acid Sialylation Cell imaging Tissue imaging Quantum dots Multiplexed imaging 

Notes

Acknowledgment

The authors thank the European Regional Development Fund and the Regional Council of Picardie (co-funding of equipment under CPER 2007–2013), the European Union (FP7 Marie Curie Actions, ITN SAMOSS, PITN-2013–607590), and the french embassy in Germany (postdoctoral scholarship of S.K.), for financial support. The authors thank Jörg Sänger and the Institute of Pathology Bad Berka (Germany) for providing tissue samples and for tissue imaging.

References

  1. 1.
    Moremen KW, Tiemeyer M, Nairn AV (2012) Vertebrate protein glycosylation: diversity, synthesis and function. Nat Rev Mol Cell Biol 13(7):448–462CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Spiro RG (2002) Protein glycosylation: nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds. Glycobiology 12(4):43R–56RCrossRefPubMedGoogle Scholar
  3. 3.
    Bard F, Chia J (2016) Cracking the glycome encoder: signaling, trafficking, and glycosylation. Trends Cell Biol 26(5):379–388CrossRefPubMedGoogle Scholar
  4. 4.
    Ohtsubo K, Marth JD (2006) Glycosylation in cellular mechanisms of health and disease. Cell 126:855–867CrossRefPubMedGoogle Scholar
  5. 5.
    Rudd PM, Elliott T, Cresswell P, Wilson IA, Dwek RA (2001) Glycosylation and the immune system. Science 291:2370–2376CrossRefPubMedGoogle Scholar
  6. 6.
    Gopaul KP, Crook MA (2006) Sialic acid: a novel marker of cardiovascular disease? Clin Biochem 39(7):667–681CrossRefPubMedGoogle Scholar
  7. 7.
    Hascall VC, Majors AK, De la Motte CA, Evanko SP, Wang A, Drazba JA et al (2004) Intracellular hyaluronan: a new frontier for inflammation? Biochim Biophys Acta 1673:3–12CrossRefPubMedGoogle Scholar
  8. 8.
    Varki NM, Varki A (2007) Diversity in cell surface sialic acid presentations: implications for biology and disease. Lab Invest 87:851–857CrossRefPubMedGoogle Scholar
  9. 9.
    Seton-Rogers S (2012) Metastasis multitasking hyaluronic acid. Nat Rev Cancer 12:228–228CrossRefPubMedGoogle Scholar
  10. 10.
    Büll C, Stoel MA, Den Brok MH, Adema GJ (2014) Sialic acids sweeten a tumor's life. Cancer Res 74:3199–3204CrossRefPubMedGoogle Scholar
  11. 11.
    Kawamura A, Kijima-Suda I, Sugimoto M, Itoh M, Takada K, Tomita K et al (1990) A monoclonal antibody to free N-acetylneuraminic acid. Biochim Biophys Acta 1033:201–206CrossRefPubMedGoogle Scholar
  12. 12.
    De la Motte CA, Drazba JA (2011) Viewing hyaluronan: Imaging contributes to imagining new roles for this amazing matrix polymer. J Histochem Cytochem 59:252–257CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Sterner E, Flanagan N, Gildersleeve JC (2016) Perspectives on anti-glycan antibodies gleaned from development of a community resource database. ACS Chem Biol 11(7):1773–1783CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Bowen JL, Manesiotis P, Allender CJ (2013) Twenty years since ‘antibody mimics’ by moelcular imprinting were first proposed: A critical perspective. Mol Imprinting 1:35–40CrossRefGoogle Scholar
  15. 15.
    Haupt K, Linares AV, Bompart M, Tse Sum Bui B (2012) Moelcularly imprinted polymers. Top Curr Chem 325:1–28CrossRefPubMedGoogle Scholar
  16. 16.
    Alexander C, Andersson HS, Andersson LI, Ansell RJ, Kirsch N, Nicholls IA et al (2006) Molecular imprinting science and technology: a survey of the literature for the years up to and including 2003. J Mol Recognit 19:106–180CrossRefPubMedGoogle Scholar
  17. 17.
    Takeuchi T, Sunayama H (2015) Molecularly imprinted polymers. In: Kobayashi S, Müllen K (eds) Encyclopedia of polymeric nanomaterials. Springer, Berlin Heidelberg, p 1291CrossRefGoogle Scholar
  18. 18.
    Kunath S, Panagiotopoulou M, Maximilien J, Marchyk N, Sänger J, Haupt K (2015) Cell and tissue imaging with molecularly imprinted polymers as plastic antibody mimics. Adv Healthc Mater 4:1322–1326CrossRefPubMedGoogle Scholar
  19. 19.
    Panagiotopoulou M, Kunath S, Medina-Rangel PX, Haupt K, Tse Sum Bui B (2016) Fluorescent molecularly imprinted polymers as plastic antibodies for selective labeling and imaging of hyaluronan and sialic acid on fixed and living cells. Biosens Bioelectron. doi: 10.1016/j.bios.2016.07.080 PubMedGoogle Scholar
  20. 20.
    Shinde S, El-Schich Z, Malakpour A, Wan W, Dizeyi N, Mohammadi R et al (2015) Sialic acid-imprinted fluorescent core–shell particles for selective labeling of cell surface glycans. J Am Chem Soc 137:13908–13912CrossRefPubMedGoogle Scholar
  21. 21.
    Wang S, Yin D, Wang W, Shen X, Zhu JJ, Chen HY et al (2016) Targeting and imaging of cancer cells via monosaccharide-imprinted fluorescent nanoparticles. Sci Rep 6:22757–22767CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Ton XA, Tse Sum Bui B, Resmini M, Bonomi P, Dika I, Soppera O et al (2013) A versatile fiber-optic fluorescence sensor based on molecularly imprinted microstructures polymerized in situ. Angew Chem Int Ed 52(32):8317–8321CrossRefGoogle Scholar
  23. 23.
    Liu RY, Guan GJ, Wang SH, Zhang ZP (2011) Core-shell nanostructured molecular imprinting fluorescent chemosensor for selective detection of atrazine herbicide. Analyst 136:184–190CrossRefPubMedGoogle Scholar
  24. 24.
    Yang YQ, Niu H, Zhang H (2016) Direct and highly selective drug optosensing in real, undiluted biological samples with quantum-dot-labeled hydrophilic molecularly imprinted polymer microparticles. ACS Appl Mater Interfaces 8(24):15741–15749CrossRefPubMedGoogle Scholar
  25. 25.
    Wei F, Xu G, Wu Y, Wang X, Yang J, Liu L et al (2016) Molecularly imprinted polymers on dual-color quantum dots for simultaneous detection of norepinephrine and epinephrine. Sens Actuators B Chem 229:38–46CrossRefGoogle Scholar
  26. 26.
    Panagiotopoulou M, Salinas Y, Beyazit S, Kunath S, Duma L, Prost E et al (2016) Molecularly imprinted polymer-coated quantum dots for multiplexed cell targeting and imaging. Angew Chem Int Ed 55:8244–8248CrossRefGoogle Scholar
  27. 27.
    Beyazit S, Ambrosini S, Marchyk N, Palo E, Kale V, Soukka T et al (2014) Versatile synthetic strategy for coating upconverting nanoparticles with polymer shells through localized photopolymerization by using the particles as internal light sources. Angew Chem Int Ed 53(34):8919–8923CrossRefGoogle Scholar
  28. 28.
    Tang Y, Gao Z, Wang S, Gao X, Gao J, Ma Y et al (2015) Upconversion particles coated with molecularly imprinted polymers as fluorescence probe for detection of clenbuterol. Biosens Bioelectron 71:44–50CrossRefPubMedGoogle Scholar
  29. 29.
    Xu S, Lu X (2016) Mesoporous structured MIPs@CDs fluorescence sensor for highly sensitive detection of TNT. Biosens Bioelectron 85:950–956CrossRefPubMedGoogle Scholar
  30. 30.
    Bossi AM, Sharma PS, Montana L, Zoccatelli G, Laub O, Levi R (2012) Fingerprint-imprinted polymer: rational selection of peptide epitope templates for the determination of proteins by molecularly imprinted polymers. Anal Chem 84(9):4036–4041CrossRefPubMedGoogle Scholar
  31. 31.
    Rachkov A, Minoura N (2001) Towards molecularly imprinted polymers selective to peptides and proteins. The epitope approach. Biochim Biophys Acta 1544(1–2):255–266CrossRefPubMedGoogle Scholar
  32. 32.
    Tammi R, Rilla K, Pienimäki J-P, MacCallum DK, Hogg M, Luukkonen M et al (2001) Hyaluronan enters keratinocytes by a novel endocytic route for catabolism. J Biol Chem 276:35111–35122CrossRefPubMedGoogle Scholar
  33. 33.
    Nestora S, Merlier F, Beyazit S, Prost E, Duma L, Baril B et al (2016) Plastic antibodies for cosmetics: molecularly imprinted polymers scavenge precursors of malodors. Angew Chem Int Ed 55(21):6252–6256CrossRefGoogle Scholar
  34. 34.
    Xu S, Ziegler J, Nann T (2008) Rapid synthesis of highly luminescent InP and InP/ZnS nanocrystals. J Mater Chem 18:2653–2656CrossRefGoogle Scholar
  35. 35.
    Tammi R, Ripellino JA, Margolis RU, Tammi M (1988) Localization of epidermal hyaluronic acid using the hyaluronate binding region of cartilage proteoglycan as a specific probe. J Investig Dermatol 90:412–414CrossRefPubMedGoogle Scholar
  36. 36.
    Wang C, Tammi M, Tammi R (1992) Distribution of hyaluronan and its CD44 receptor in the epithelia of human skin appendages. Histochemistry 98:105–112CrossRefPubMedGoogle Scholar
  37. 37.
    Papakonstantinou E, Roth M, Karakiulakis G (2012) Hyaluronic acid: a key molecule in skin aging. Dermatoendocrinol 4(3):253–258CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Maria Panagiotopoulou
    • 1
  • Stephanie Kunath
    • 1
  • Karsten Haupt
    • 1
  • Bernadette Tse Sum Bui
    • 1
  1. 1.CNRS Enzyme and Cell Engineering LaboratorySorbonne Universités, Université de Technologie de CompiègneCompiègne CedexFrance

Personalised recommendations