An Enzyme-Linked Aptamer Sorbent Assay to Evaluate Aptamer Binding

  • Matthew D. Moore
  • Blanca I. Escudero-Abarca
  • Lee-Ann Jaykus
Part of the Methods in Molecular Biology book series (MIMB, volume 1575)


Nucleic acid aptamers are a class of alternative ligands increasingly growing in importance in the face of contemporary detection challenges. Aptamers offer multiple advantages over traditional ligands like antibodies; however, their ability to specifically bind target molecules must first be confirmed after their generation. Use of a plate-based enzyme-linked aptamer sorbent assay (ELASA) is a generally rapid way to screen and characterize aptamer binding to protein targets. ELASA involves directly plating a protein target onto a nonspecific (polystyrene) surface and assessing binding of functionalized (biotinylated) aptamers to those plated proteins using an enzyme conjugate that recognizes the aptamers. Here, we describe an ELASA that was designed and used to evaluate and compare binding of ssDNA aptamers against the capsids of different strains of human norovirus.

Key words

Aptamer Plate assay Binding evaluation Enzyme-linked aptamer sorbent assay DNA-protein binding Aptamer binding 



This work was supported by the Agriculture and Food Research Initiative Competitive Grant no. 2011-68003-30395 from the US Department of Agriculture, National Institute of Food and Agriculture through the NoroCORE project. The authors would like to thank R. Atmar (Baylor College of Medicine, Houston, TX) for providing the VLPs and S. Rupp for his input on the figures.


  1. 1.
    Tombelli S, Minunni M, Mascini M (2007) Aptamers-based assays for diagnostics, environmental and food analysis. Biomol Eng 24:191–200 Accessed 7 Nov 2013CrossRefPubMedGoogle Scholar
  2. 2.
    Lequin RM (2005) Enzyme immunoassay (EIA)/enzyme-linked immunosorbent assay (ELISA). Clin Chem 51:2415–2418. doi: 10.1373/clinchem.2005.051532 CrossRefPubMedGoogle Scholar
  3. 3.
    Schuurs AHWM, Van Weemen BK (1980) Enzyme-immunoassay: a powerful analytical tool. J Immunoassay 1:229–249 CrossRefPubMedGoogle Scholar
  4. 4.
    Moe CL, Sair A, Lindesmith L, Estes MK, Jaykus L (2004) Diagnosis of Norwalk virus infection by indirect enzyme immunoassay detection of salivary antibodies to recombinant Norwalk virus antigen. Clin Vaccine Immunol 11:1028–1034. doi: 10.1128/CDLI.11.6.1028 CrossRefGoogle Scholar
  5. 5.
    Rogers JD, Ajami NJ, Fryszczyn BG, Estes MK, Atmar RL et al (2013) Identification and characterization of a peptide affinity reagent for detection of noroviruses in clinical samples. J Clin Microbiol 51:1803–1808 Accessed 20 Mar 2014CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Escudero-Abarca BI, Suh SH, Moore MD, Dwivedi HP, Jaykus L-A (2014) Selection, characterization and application of nucleic acid aptamers for the capture and detection of human norovirus strains. PLoS ONE 9:e106805 Accessed 8 Sept 2014CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Moore MD, Escudero-Abarca BI, Suh SH, Jaykus L-A (2015) Generation and characterization of nucleic acid aptamers targeting the capsid P domain of a human norovirus GII.4 strain. J Biotechnol 209:41–49 CrossRefPubMedGoogle Scholar
  8. 8.
    Manuel CS, Moore MD, Jaykus LA (2015) Destruction of the capsid and genome of GII.4 human norovirus occurs during exposure to metal alloys containing copper. Appl Environ Microbiol 81:4940–4946 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Ebel GD, Dupuis AP, Nicholas D, Young D, Maffei J et al (2002) Detection by enzyme-linked immunosorbent assay of antibodies to West Nile virus in birds. Emerg Infect Dis 8:979–982 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Hirneisen KA, Kniel KE (2012) Comparison of ELISA attachment and infectivity assays for murine norovirus. J Virol Methods 186:14–20. Accessed 8 Sept 2014.
  11. 11.
    Rodríguez-Lázaro D, Hernández M, Scortti M, Esteve T, Vázquez-boland JA et al (2004) Quantitative detection of Listeria monocytogenes and Listeria innocua by real-time PCR: assessment of hly, iap, and lin02483 targets and AmpliFluor technology. Appl Environ Microbiol. doi: 10.1128/AEM.70.3.1366 Google Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Matthew D. Moore
    • 1
  • Blanca I. Escudero-Abarca
    • 1
  • Lee-Ann Jaykus
    • 1
  1. 1.Department of Food, Bioprocessing, and Nutrition SciencesNorth Carolina State UniversityRaleighUSA

Personalised recommendations