Skip to main content

Rapid Selection of RNA Aptamers that Activate Fluorescence of Small Molecules

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1575))

Abstract

RNA aptamers can serve as valuable tools for studying and manipulating live cells. Fluorescent aptamers are the ones that bind to and turn on fluorescence of small-molecule dyes (fluorogens). Similarly to fluorescent proteins, fluorescent RNA aptamers can be used to image spatial and temporal RNA dynamics in live cells. Additionally, these aptamers can serve as a basis for engineering genetically encoded fluorescent biosensors. This chapter presents a protocol for rapid and efficient screening of RNA aptamer libraries to isolate fluorescent aptamers. The protocol describes how to design, clone, and express RNA aptamer library in bacterial cells and how to screen the bacteria to find aptamers with the desired fluorescent properties.

The original version of this chapter was revised. The erratum to this chapter is available at: DOI 10.1007/978-1-4939-6857-2_27

* Current affiliation: Essen Bioscience, Ann Arbor, MI, USA

Previous affiliation: Department of Pharmacology, Weill Medical College, Cornell University, New York, NY, USA

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-1-4939-6857-2_27

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Famulok M, Hartig JS, Mayer G (2007) Functional aptamers and aptazymes in biotechnology, diagnostics, and therapy. Chem Rev 107:3715–3743

    Article  CAS  PubMed  Google Scholar 

  2. Thiel KW, Giangrande PH (2009) Therapeutic applications of DNA and RNA aptamers. Oligonucleotides 19:209–222

    Article  CAS  PubMed  Google Scholar 

  3. Bruno JG (2015) Predicting the uncertain future of aptamer-based diagnostics and therapeutics. Molecules 20:6866–6887

    Article  CAS  PubMed  Google Scholar 

  4. Kaur G, Roy I (2008) Therapeutic applications of aptamers. Expert Opin Investig Drugs 17:43–60

    Article  CAS  PubMed  Google Scholar 

  5. Keefe AD, Pai S, Ellington A (2010) Aptamers as therapeutics. Nat Rev Drug Discov 9:537–550

    Article  CAS  PubMed  Google Scholar 

  6. Babendure JR, Adams SR, Tsien RY (2003) Aptamers switch on fluorescence of triphenylmethane dyes. J Am Chem Soc 125:14716–14717

    Article  CAS  PubMed  Google Scholar 

  7. Paige JS, Wu KY, Jaffrey SR (2011) RNA mimics of green fluorescent protein. Science 333:642–646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Strack RL, Disney MD, Jaffrey SR (2013) A superfolding Spinach2 reveals the dynamic nature of trinucleotide repeat RNA. Nat Methods 10:1219–1224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Filonov GS, Moon JD, Svensen N, Jaffrey SR (2014) Broccoli: rapid selection of an RNA mimic of green fluorescent protein by fluorescence-based selection and directed evolution. J Am Chem Soc 136(46):16299–16308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Guet D, Burns LT, Maji S, Boulanger J, Hersen P, Wente SR et al (2015) Combining Spinach-tagged RNA and gene localization to image gene expression in live yeast. Nat Commun 6:8882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang J, Fei J, Leslie BJ, Han KY, Kuhlman TE, Ha T (2015) Tandem spinach array for mRNA imaging in living bacterial cells. Sci Rep 5:17295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lu Z, Filonov GS, Noto JJ, Schmidt CA, Hatkevich TL, Wen Y et al (2015) Metazoan tRNA introns generate stable circular RNAs in vivo. RNA 21:1554–1565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pothoulakis G, Ceroni F, Reeve B, Ellis T (2014) The spinach RNA aptamer as a characterization tool for synthetic biology. ACS Synth Biol 3:182–187

    Article  CAS  PubMed  Google Scholar 

  14. Paige JS, Nguyen-Duc T, Song W, Jaffrey SR (2012) Fluorescence imaging of cellular metabolites with RNA. Science 335:1194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Song W, Strack RL, Jaffrey SR (2013) Imaging bacterial protein expression using genetically encoded RNA sensors. Nat Methods 10:873–875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. You M, Litke JL, Jaffrey SR (2015) Imaging metabolite dynamics in living cells using a spinach-based riboswitch. Proc Natl Acad Sci U S A 112:E2756–E2765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kellenberger CA, Chen C, Whiteley AT, Portnoy DA, Hammond MC (2015) RNA-based fluorescent biosensors for live cell imaging of second messenger cyclic di-AMP. J Am Chem Soc 137:6432–6435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kellenberger CA, Wilson SC, Sales-Lee J, Hammond MC (2013) RNA-based fluorescent biosensors for live cell imaging of second messengers cyclic di-GMP and cyclic AMP-GMP. J Am Chem Soc 135:4906–4909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Stoltenburg R, Reinemann C, Strehlitz B (2007) SELEX--a (r)evolutionary method to generate high-affinity nucleic acid ligands. Biomol Eng 24:381–403

    Article  CAS  PubMed  Google Scholar 

  20. Piatkevich KD, Verkhusha VV (2010) Advances in engineering of fluorescent proteins and photoactivatable proteins with red emission. Curr Opin Chem Biol 14:23–29

    Article  CAS  PubMed  Google Scholar 

  21. Stoltenburg R, Nikolaus N, Strehlitz B (2012) Capture-SELEX: selection of DNA aptamers for aminoglycoside antibiotics. J Anal Methods Chem 2012:415697

    Article  PubMed  PubMed Central  Google Scholar 

  22. Koizumi M, Soukup GA, Kerr JN, Breaker RR (1999) Allosteric selection of ribozymes that respond to the second messengers cGMP and cAMP. Nat Struct Biol 6:1062–1071

    Article  CAS  PubMed  Google Scholar 

  23. Strack RL, Song W, Jaffrey SR (2014) Using spinach-based sensors for fluorescence imaging of intracellular metabolites and proteins in living bacteria. Nat Protoc 9:146–155

    Article  CAS  PubMed  Google Scholar 

  24. Gonzales, M.F., Brooks, T., Pukatzki, S.U., and Provenzano, D. (2013) Rapid protocol for preparation of electrocompetent Escherichia coli and Vibrio cholerae. J Vis Exp 80:e50684.

    Google Scholar 

  25. Shao K, Ding W, Wang F, Li H, Ma D, Wang H (2011) Emulsion PCR: a high efficient way of PCR amplification of random DNA libraries in aptamer selection. PLoS One 6:e24910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Song W, Strack RL, Svensen N, Jaffrey SR (2014) Plug-and-play fluorophores extend the spectral properties of Spinach. J Am Chem Soc 136:1198–1201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 46:3–26

    Article  CAS  PubMed  Google Scholar 

  28. Filonov GS, Kam CW, Song W, Jaffrey SR (2015) In-gel imaging of RNA processing using broccoli reveals optimal aptamer expression strategies. Chem Biol 22:649–660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

The author thanks Prof. Samie R. Jaffrey for his generous support and scientific guidance. Flow cytometry experiments were performed with the help of J. McCormick and S.Z. Merlin (Department of Pathology and Laboratory Medicine cell sorter core). The author is also grateful to the members of the Jaffrey lab for their feedback as they used this protocol. This work was supported by NIH grants to Prof. Samie R. Jaffrey (R01 NS064516 and R01 EB010249).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grigory S. Filonov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Filonov, G.S. (2017). Rapid Selection of RNA Aptamers that Activate Fluorescence of Small Molecules. In: Tiller, T. (eds) Synthetic Antibodies. Methods in Molecular Biology, vol 1575. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6857-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6857-2_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6855-8

  • Online ISBN: 978-1-4939-6857-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics