Selection of Aptamers Against Whole Living Cells: From Cell-SELEX to Identification of Biomarkers

  • Nam Nguyen Quang
  • Anna Miodek
  • Agnes Cibiel
  • Frédéric Ducongé
Part of the Methods in Molecular Biology book series (MIMB, volume 1575)


Aptamer selection protocols, named cell-SELEX, have been developed to target trans-membrane proteins using whole living cells as target. This technique presents several advantages. (1) It does not necessitate the use of purified proteins. (2) Aptamers are selected against membrane proteins in their native conformation. (3) Cell-SELEX can be performed to identify aptamers against biomarkers differentially expressed between different cell lines without prior knowledge of the targets. (4) Aptamers identified by cell-SELEX can be further used to purify their targets and to identify new biomarkers. Here, we provide a protocol of cell-SELEX including the preparation of an oligonucleotide library, next-generation sequencing and radioactive binding assays. Furthermore, we also provide a protocol to purify and identify the target of these aptamers. These protocols could be useful for the discovery of lead therapeutic compounds and diagnostic cell-surface biomarkers.

Key words

Aptamer Cell-SELEX Oligonucleotides Biomarkers 



This protocol of cell-SELEX was first developed in the lab of Domenico Libri before being further optimized in the lab of Bertrand Tavitian and now in the Neurodegenerative Diseases Laboratory, we thank all our collaborators from these labs for help and fruitful discussions, especially Carine Pestourie, Karine Gombert, Benoit Jego, Isabelle Janssens, Jocelyne Boulay, Mohamed Aissouni, Bertrand Tavitian, and Domenico Libri. We are also grateful to Dr. Rui Sousa (University of Texas, San Antonio) for his generous gift of a T7Y639F RNA polymerase-expressing plasmid. Studies relating to selection of aptamers in our laboratories were supported by grants from the “Agence Nationale pour la Recherche” [projects ANR-RNTS TomoFluo3D, ANR-PNANO nanorings and under the frame of EuroNanoMed (project META)]; the FMT-XCT European program [Grant agreement no. 201792] and the European Molecular Imaging Laboratory (EMIL) network [EU contract LSH-2004-503569].


  1. 1.
    Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510CrossRefPubMedGoogle Scholar
  2. 2.
    Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822CrossRefPubMedGoogle Scholar
  3. 3.
    Cibiel A, Dupont DM, Duconge F (2011) Methods to identify aptamers against cell surface biomarkers. Pharmaceuticals 4:1216–1235CrossRefPubMedCentralGoogle Scholar
  4. 4.
    Keefe AD, Pai S, Ellington A (2010) Aptamers as therapeutics. Nat Rev Drug Discov 9:537–550CrossRefPubMedGoogle Scholar
  5. 5.
    Opazo F, Levy M, Byrom M, Schafer C, Geisler C, Groemer TW, Ellington AD, Rizzoli SO (2012) Aptamers as potential tools for super-resolution microscopy. Nat Methods 9:938–939CrossRefPubMedGoogle Scholar
  6. 6.
    Zhang P, Zhao N, Zeng Z, Chang CC, Zu Y (2010) Combination of an aptamer probe to CD4 and antibodies for multicolored cell phenotyping. Am J Clin Pathol 134:586–593CrossRefPubMedGoogle Scholar
  7. 7.
    Meyer M, Scheper T, Walter JG (2013) Aptamers: versatile probes for flow cytometry. Appl Microbiol Biotechnol 97(16):7097–7109CrossRefPubMedGoogle Scholar
  8. 8.
    Mayer G (2009) The chemical biology of aptamers. Angew Chem Int Ed Engl 48:2672–2689CrossRefPubMedGoogle Scholar
  9. 9.
    Keeney TR, Bock C, Gold L, Kraemer S, Lollo B, Nikrad M, Stanton M, Stewart A, Vaught JD, Walker JJ (2009) Automation of the somalogic proteomics assay: a platform for biomarker discovery. J Assoc Lab Automa 14:360–366CrossRefGoogle Scholar
  10. 10.
    Pestourie C, Tavitian B, Duconge F (2005) Aptamers against extracellular targets for in vivo applications. Biochimie 87:921–930CrossRefPubMedGoogle Scholar
  11. 11.
    Cibiel A, Pestourie C, Duconge F (2012) In vivo uses of aptamers selected against cell surface biomarkers for therapy and molecular imaging. Biochimie 94:1595–1606CrossRefPubMedGoogle Scholar
  12. 12.
    Dickinson H, Lukasser M, Mayer G, Huttenhofer A (2015) Cell-SELEX: in vitro selection of synthetic small specific ligands. Methods Mol Biol 1296:213–224CrossRefPubMedGoogle Scholar
  13. 13.
    Cerchia L, Duconge F, Pestourie C, Boulay J, Aissouni Y, Gombert K, Tavitian B, de Franciscis V, Libri D (2005) Neutralizing aptamers from whole-cell SELEX inhibit the RET receptor tyrosine kinase. PLoS Biol 3:e123CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Ohuchi, S.P., Ohtsu, T. and Nakamura, Y. (2005) A novel method to generate aptamers against recombinant targets displayed on the cell surface. Nucleic Acids Symp Ser (Oxf), 49:351–352Google Scholar
  15. 15.
    Ohuchi SP, Ohtsu T, Nakamura Y (2006) Selection of RNA aptamers against recombinant transforming growth factor-beta type III receptor displayed on cell surface. Biochimie 88(7):897–904CrossRefPubMedGoogle Scholar
  16. 16.
    Pestourie C, Cerchia L, Gombert K, Aissouni Y, Boulay J, De Franciscis V, Libri D, Tavitian B, Duconge F (2006) Comparison of different strategies to select aptamers against a transmembrane protein target. Oligonucleotides 16:323–335CrossRefPubMedGoogle Scholar
  17. 17.
    Meyer S, Maufort JP, Nie J, Stewart R, McIntosh BE, Conti LR, Ahmad KM, Soh HT, Thomson JA (2013) Development of an efficient targeted cell-SELEX procedure for DNA aptamer reagents. PLoS One 8:e71798CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Zueva E, Rubio LI, Duconge F, Tavitian B (2011) Metastasis-focused cell-based SELEX generates aptamers inhibiting cell migration and invasion. Int J Cancer 128:797–804CrossRefPubMedGoogle Scholar
  19. 19.
    Cibiel A, Quang NN, Gombert K, Theze B, Garofalakis A, Duconge F (2014) From ugly duckling to swan: unexpected identification from cell-SELEX of an anti-Annexin A2 aptamer targeting tumors. PLoS One 9:e87002CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Blank M, Weinschenk T, Priemer M, Schluesener H (2001) Systematic evolution of a DNA aptamer binding to rat brain tumor microvessels. selective targeting of endothelial regulatory protein pigpen. J Biol Chem 276:16464–16468CrossRefPubMedGoogle Scholar
  21. 21.
    Wang C, Zhang M, Yang G, Zhang D, Ding H, Wang H, Fan M, Shen B, Shao N (2003) Single-stranded DNA aptamers that bind differentiated but not parental cells: subtractive systematic evolution of ligands by exponential enrichment. J Biotechnol 102:15–22CrossRefPubMedGoogle Scholar
  22. 22.
    Shangguan D, Meng L, Cao ZC, Xiao Z, Fang X, Li Y, Cardona D, Witek RP, Liu C, Tan W (2008) Identification of liver cancer-specific aptamers using whole live cells. Anal Chem 80:721–728CrossRefPubMedGoogle Scholar
  23. 23.
    Parekh P, Tang Z, Turner PC, Moyer RW, Tan W (2010) Aptamers recognizing glycosylated hemagglutinin expressed on the surface of vaccinia virus-infected cells. Anal Chem 82:8642–8649CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Zueva E, Rubio LI, Duconge F, Tavitian B (2010) Metastasis-focused cell-based SELEX generates aptamers inhibiting cell migration and invasion. Int J Cancer 128:797–804CrossRefGoogle Scholar
  25. 25.
    Daniels DA, Chen H, Hicke BJ, Swiderek KM, Gold L (2003) A tenascin-C aptamer identified by tumor cell SELEX: systematic evolution of ligands by exponential enrichment. Proc Natl Acad Sci U S A 100:15416–15421CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Mallikaratchy P, Tang Z, Kwame S, Meng L, Shangguan D, Tan W (2007) Aptamer directly evolved from live cells recognizes membrane bound immunoglobin heavy mu chain in Burkitt’s lymphoma cells. Mol Cell Proteomics 6:2230–2238CrossRefPubMedGoogle Scholar
  27. 27.
    Ulrich H, Wrenger C (2009) Disease-specific biomarker discovery by aptamers. Cytometry A 75(9):727–733CrossRefPubMedGoogle Scholar
  28. 28.
    Berezovski MV, Lechmann M, Musheev MU, Mak TW, Krylov SN (2008) Aptamer-Facilitated Biomarker Discovery (AptaBiD). J Am Chem Soc 130(28):9137–9143CrossRefPubMedGoogle Scholar
  29. 29.
    Bartel DP, Szostak JW (1993) Isolation of new ribozymes from a large pool of random sequences [see comment]. Science 261:1411–1418CrossRefPubMedGoogle Scholar
  30. 30.
    Quang NN, Pestourie C, Cibiel A, Ducongé F (2016) How to measure the affinity of aptamers for membrane proteins expressed on the surface of living adherent cells. Methods 97:35–43CrossRefPubMedGoogle Scholar
  31. 31.
    Cunningham PR, Ofengand J (1990) Use of inorganic pyrophosphatase to improve the yield of in vitro transcription reactions catalyzed by T7 RNA polymerase. Biotechniques 9:713–714PubMedGoogle Scholar
  32. 32.
    Padilla R, Sousa R (1999) Efficient synthesis of nucleic acids heavily modified with non-canonical ribose 2′-groups using a mutantT7 RNA polymerase (RNAP). Nucleic Acids Res 27:1561–1563CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Hansske F, Cramer F (1979) Modification of the 3′ terminus of tRNA by periodate oxidation and subsequent reaction with hydrazides. Methods Enzymol 59:172–181CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Nam Nguyen Quang
    • 1
  • Anna Miodek
    • 1
  • Agnes Cibiel
    • 1
  • Frédéric Ducongé
    • 1
  1. 1.Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Département de la Recherche Fondamentale (DRF), Institut d’Imagerie Biomédicale (I2BM), Molecular Imaging Center (MIRCen)CNRS UMR 9199, Neurodegenerative Diseases Laboratory (LMN), Université Paris-Sud, Université Paris-SaclayFontenay-aux-RosesFrance

Personalised recommendations