Antibody Mimetics, Peptides, and Peptidomimetics

Part of the Methods in Molecular Biology book series (MIMB, volume 1575)


In spite of their widespread applications as therapeutic, diagnostic, and detection agents, the limitations of polyclonal and monoclonal antibodies have enthused scientists to plan for next-generation biomedical agents, the so-called antibody mimetics, which offer many advantages compared to traditional antibodies. Antibody mimetics could be designed through protein-directed evolution or fusion of complementarity-determining regions with intervening framework regions. In the recent decade, extensive progress has been made in exploiting human, butterfly (Pieris brassicae), and bacterial systems to design and select mimetics using display technologies. Notably, some of the mimetics have made their way to market. Numerous limitations lie ahead in developing mimetics for different biomedical usage, particularly for which conventional antibodies are ineffective. This chapter presents a brief overview of the current characteristics, construction, and applications of antibody mimetics.

Key words

Antibody mimetics Protein engineering Monoclonal antibodies (mAbs) Therapeutics Diagnostics 



This work has been supported by China Nature Science Foundation (grant no. 31572556), Ph.D. Programs Foundation of Ministry of Education (grant no. 20130204110023), and The Key Construction Program (grant no. 2015SD0018) of International Cooperation Base in S&T, Shaanxi Province, China.


  1. 1.
    Köhler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:495–497CrossRefPubMedGoogle Scholar
  2. 2.
    Murali R, Greene MI (2012) Structure based antibody-like peptidomimetics. Pharmaceuticals 5:209–235CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Skerra A (2001) ‘Anticalins’: a new class of engineered ligand-binding proteins with antibody-like properties. Rev Mol Biotechnol 74:257–275CrossRefGoogle Scholar
  4. 4.
    Jefferis R (2009) Glycosylation as a strategy to improve antibody-based therapeutics. Nat Rev Drug Discov 8:226–234CrossRefPubMedGoogle Scholar
  5. 5.
    Renberg B, Nordin J, Merca A, Uhlén M, Feldwisch J, Nygren PÅ, Eriksson Karlström A (2007) Affibody molecules in protein capture microarrays: evaluation of multidomain ligands and different detection formats. J Proteome Res 6:171–179CrossRefPubMedGoogle Scholar
  6. 6.
    Chames P, Van Regenmortel M, Weiss E, Baty D (2009) Therapeutic antibodies: successes, limitations and hopes for the future. Br J Pharmacol 157:220–233CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Hey T, Fiedler E, Rudolph R, Fiedler M (2005) Artificial, non-antibody binding proteins for pharmaceutical and industrial applications. Trends Biotechnol 23:514–522CrossRefPubMedGoogle Scholar
  8. 8.
    Russell WMS, Burch RL, Hume CW (1959) The principles of humane experimental technique. Methuen & Co., LondonGoogle Scholar
  9. 9.
    Romero PA, Arnold FH (2009) Exploring protein fitness landscapes by directed evolution. Nat Rev Mol Cell Biol 10:866–876CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Schönfeld D, Matschiner G, Chatwell L, Trentmann S, Gille H, Hülsmeyer M, Brown N, Kaye PM, Schlehuber S, Hohlbaum AM, Skerra A (2009) An engineered lipocalin specific for CTLA-4 reveals a combining site with structural and conformational features similar to antibodies. Proc Natl Acad Sci 106:8198–8203CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Silverman J, Lu Q, Bakker A, To, W, Duguay A, Alba BM, Smith R, Rivas A, Li P, Le H, Whitehorn E (2005) Multivalent avimer proteins evolved by exon shuffling of a family of human receptor domains. Nat Biotechnol 23:1556–1561CrossRefPubMedGoogle Scholar
  12. 12.
    Qiu XQ, Wang H, Cai B, Wang LL, Yue ST (2007) Small antibody mimetics comprising two complementarity-determining regions and a framework region for tumor targeting. Nat Biotechnol 25:921–929CrossRefPubMedGoogle Scholar
  13. 13.
    Ahlgren S, Wållberg H, Tran TA, Widström C, Hjertman M, Abrahmsén L, Berndorff D, Dinkelborg LM, Cyr JE, Feldwisch J, Orlova A (2009) Targeting of HER2-expressing tumors with a site-specifically 99mTc-labeled recombinant affibody molecule, ZHER2: 2395, with C-terminally engineered cysteine. J Nucl Med 50:781–789CrossRefPubMedGoogle Scholar
  14. 14.
    Seidman A, Hudis C, Pierri MK, Shak S, Paton V, Ashby M, Murphy M, Stewart SJ, Keefe D (2002) Cardiac dysfunction in the trastuzumab clinical trials experience. J Clin Oncol 20:1215–1221CrossRefPubMedGoogle Scholar
  15. 15.
    Wållberg H, Löfdahl PÅ, Tschapalda K, Uhlén M, Tolmachev V, Nygren PÅ, Ståhl S (2011) Affinity recovery of eight HER2-binding affibody variants using an anti-idiotypic affibody molecule as capture ligand. Protein Expr Purif 76:127–135CrossRefPubMedGoogle Scholar
  16. 16.
    Zielinski R, Lyakhov I, Jacobs A, Chertov O, Kramer-Marek G, Francella N, Stephen A, Fisher R, Blumenthal R, Capala J (2009) Affitoxin–a novel recombinant, HER2-specific, anti-cancer agent for targeted therapy of HER2-positive tumors. J Immunother 32:817–825 (Hagerstown, Md: 1997)CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Tolmachev V, Orlova A, Pehrson R, Galli J, Baastrup B, Andersson K, Sandström M, Rosik D, Carlsson J, Lundqvist H, Wennborg A (2007) Radionuclide therapy of HER2-positive microxenografts using a 177Lu-labeled HER2-specific Affibody molecule. Cancer Res 67:2773–2782CrossRefPubMedGoogle Scholar
  18. 18.
    Beuttler J, Rothdiener M, Müller D, Frejd FY, Kontermann RE (2009) Targeting of epidermal growth factor receptor (EGFR)-expressing tumor cells with sterically stabilized affibody liposomes (SAL). Bioconjug Chem 20:1201–1208CrossRefPubMedGoogle Scholar
  19. 19.
    Göstring L, Malm M, Höidén-Guthenberg I, Frejd FY, Ståhl S, Löfblom J, Gedda L (2012) Cellular effects of HER3-specific affibody molecules. PLoS One 7:e40023CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Eyer F, Steimer W, Nitzsche T, Jung N, Neuberger H, Müller C, Schlapschy M, Zilker T, Skerra A (2012) Intravenous application of an anticalin dramatically lowers plasma digoxin levels and reduces its toxic effects in rats. Toxicol Appl Pharmacol 263:352–359CrossRefPubMedGoogle Scholar
  21. 21.
    Rusconi CP, Roberts JD, Pitoc GA, Nimjee SM, White RR, Quick G, Scardino E, Fay WP, Sullenger BA (2004) Antidote-mediated control of an anticoagulant aptamer in vivo. Nat Biotechnol 22:1423–1428CrossRefPubMedGoogle Scholar
  22. 22.
    Balsitis S, Dick F, Dyson N, Lambert PF (2006) Critical roles for nonpRb targets of human papillomavirus type 16 E7 in cervical carcinogenesis. Cancer Res 66:9393–9400CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Mirecka EA, Hey T, Fiedler U, Rudolph R, Hatzfeld M (2009) Affilin molecules selected against the human papillomavirus E7 protein inhibit the proliferation of target cells. J Mol Biol 390:710–721CrossRefPubMedGoogle Scholar
  24. 24.
    Loefblom J, Frejd FY (2011) Alternative scaffolds as bispecific antibody mimetics. In: Kontermann RE (ed) Bispecific antibodies. Springer-Verlag, Berlin Heidelberg, pp 115–133CrossRefGoogle Scholar
  25. 25.
    Schlatter D, Brack S, Banner DW, Batey S, Benz J, Bertschinger J, Huber W, Joseph C, Rufer AC, van der Klooster A, Weber M (2012) Generation, characterization and structural data of chymase binding proteins based on the human Fyn kinase SH3 domain. Landes Biosci 4:497–508Google Scholar
  26. 26.
    Grabulovski D, Kaspar M, Neri D (2007) A novel, non-immunogenic Fyn SH3-derived binding protein with tumor vascular targeting properties. J Biol Chem 282:3196–3204CrossRefPubMedGoogle Scholar
  27. 27.
    Covagen, Advanced Biopharmaceuticals. Covagen utilizes the unique versatility of Fynomers to create next generation biologic.¼118. Accessed 21 Jun 2013
  28. 28.
    Hirano T (1992) Interleukin-6 and its relation to inflammation and disease. Clin Immunol Immunopathol 62:S60–S65CrossRefPubMedGoogle Scholar
  29. 29.
    Krehenbrink M, Chami M, Guilvout I, Alzari PM, Pécorari F, Pugsley AP (2008) Artificial binding proteins (Affitins) as probes for conformational changes in secretin PulD. J Mol Biol 383:1058–1068CrossRefPubMedGoogle Scholar
  30. 30.
    Scott CJ, Taggart CC (2010) Biologic protease inhibitors as novel therapeutic agents. Biochimie 92(11):1681–1688CrossRefPubMedGoogle Scholar
  31. 31.
    Mouratou B, Schaeffer F, Guilvout I, Tello-Manigne D, Pugsley AP, Alzari PM, Pecorari F (2007) Remodeling a DNA binding protein as a specific in vivo inhibitor of bacterial secretin PulD. Proc Natl Acad Sci 104:17983–17988CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Lee CM, Shrieve DC, Zempolich KA, Lee RJ, Hammond E, Handrahan DL, Gaffney DK (2005) Correlation between human epidermal growth factor receptor family (EGFR, HER2, HER3, HER4), phosphorylated Akt (P-Akt), and clinical outcomes after radiation therapy in carcinoma of the cervix. Gynecol Oncol 99:415–421CrossRefPubMedGoogle Scholar
  33. 33.
    Lipovšek D (2011) Adnectins: engineered target-binding protein therapeutics. Protein Eng Des Sel 24:3–9CrossRefPubMedGoogle Scholar
  34. 34.
    Mamluk R, Carvajal IM, Morse BA, Wong HK, Abramowitz J, Aslanian S, Lim AC, Gokemeijer J, Storek MJ, Lee J, Gosselin M (2010) Anti-tumor effect of CT-322 as an adnectin inhibitor of vascular endothelial growth factor receptor-2. Landes Biosci 2:199–208Google Scholar
  35. 35.
    Khalili H, Godwin A, Choi JW, Lever R, Khaw PT, Brocchini S (2013) Fab-PEG-Fab as a potential antibody mimetic. Bioconjug Chem 24:1870–1882CrossRefPubMedGoogle Scholar
  36. 36.
    Gao J, Li B, Li H, Zhang X, Zhang D, Zhao L, Wang C, Fang C, Qian W, Hou S, Kou G (2009) Development and characterization of a fully functional small anti-HER2 antibody. BMB Rep 42:636–641CrossRefPubMedGoogle Scholar
  37. 37.
    Ladner RC (2007) Antibodies cut down to size. Nat Biotechnol 25:875–877CrossRefPubMedGoogle Scholar
  38. 38.
    Stumpp MT, Amstutz P (2007) DARPins: a true alternative to antibodies. Curr Opin Drug Discov Dev 10:153–159Google Scholar
  39. 39.
    Schweizer A, Rusert P, Berlinger L, Ruprecht CR, Mann A, Corthésy S, Turville SG, Aravantinou M, Fischer M, Robbiani M, Amstutz P (2008) CD4-specific designed ankyrin repeat proteins are novel potent HIV entry inhibitors with unique characteristics. PLoS Pathog 4:e1000109CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Wurch T, Pierré A, Depil S (2012) Novel protein scaffolds as emerging therapeutic proteins: from discovery to clinical proof-of-concept. Trends Biotechnol 30:575–582CrossRefPubMedGoogle Scholar
  41. 41.
    Löfblom J, Feldwisch J, Tolmachev V, Carlsson J, Ståhl S, Frejd FY (2010) Affibody molecules: engineered proteins for therapeutic, diagnostic and biotechnological applications. FEBS Lett 584:2670–2680CrossRefPubMedGoogle Scholar
  42. 42.
    Tran T, Engfeldt T, Orlova A, Sandström M, Feldwisch J, Abrahmsén L, Wennborg A, Tolmachev V, Karlström AE (2007) 99mTc-maEEE-ZHER2: 342, an Affibody molecule-based tracer for the detection of HER2 expression in malignant tumors. Bioconjug Chem 18:1956–1964CrossRefPubMedGoogle Scholar
  43. 43.
    Skerra A (2008) Alternative binding proteins: anticalins–harnessing the structural plasticity of the lipocalin ligand pocket to engineer novel binding activities. FEBS J 275:2677–2683CrossRefPubMedGoogle Scholar
  44. 44.
    Gebauer M, Schiefner A, Matschiner G, Skerra A (2013) Combinatorial design of an Anticalin directed against the extra-domain B for the specific targeting of oncofetal fibronectin. J Mol Biol 425:780–802CrossRefPubMedGoogle Scholar
  45. 45.
    Cai S, Singh BR (2007) Strategies to design inhibitors of clostridium botulinum neurotoxins. Infect Disord Drug Targets 7:47–57CrossRefPubMedGoogle Scholar
  46. 46.
    Arnoux B, Ducruix A, Prange T (2002) Anisotropic behaviour of the Cterminal Kunitz-type domain of the 3 chain of human type VI collagen at atomic resolution (0.9 A). Acta Crystallographica D Biol Crystallograph 58:1252–1254CrossRefGoogle Scholar
  47. 47.
    Ebersbach H, Fiedler E, Scheuermann T, Fiedler M, Stubbs MT, Reimann C, Proetzel G, Rudolph R, Fiedler U (2007) Affilin–novel binding molecules based on human g-b-crystallin, an all b-sheet protein. J Mol Biol 372:172–185CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.College of Veterinary MedicineNorthwest Agriculture and Forestry UniversityYanglingChina
  2. 2.Department of MicrobiologyKarpagam UniversityCoimbatoreIndia

Personalised recommendations