Skip to main content

Enhanced Performance of Colorimetric Biosensing on Paper Microfluidic Platforms Through Chemical Modification and Incorporation of Nanoparticles

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1571))

Abstract

This chapter describes two different methodologies used to improve the analytical performance of colorimetric paper-based biosensors. Microfluidic paper-based analytical devices (μPADs) have been produced by a stamping process and CO2 laser ablation and modified, respectively, through an oxidation step and incorporation of silica nanoparticles on the paper structure. Both methods are employed in order to overcome the largest problem associated with colorimetric detection, the heterogeneity of the color distribution in the detection zones. The modification steps are necessary to improve the interaction between the paper surface and the selected enzymes. The enhanced performance has ensured reliability for quantitative analysis of clinically relevant compounds.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Parolo C, Merkoci A (2013) Paper-based nanobiosensors for diagnostics. Chem Soc Rev 42:450–457

    Article  CAS  Google Scholar 

  2. Nery EW, Kubota LT (2013) Sensing approaches on paper-based devices: a review. Anal Bioanal Chem 405:7573–7595

    Article  CAS  Google Scholar 

  3. Martinez AW, Phillips ST, Carrilho E, Thomas SW III, Sindi H, Whitesides GM (2008) Simple telemedicine for developing regions: camera phones and paper-based microfluidic devices for real-time, off-site diagnosis. Anal Chem 80:3699–3707

    Article  CAS  Google Scholar 

  4. Garcia PT, Cardoso TMG, Garcia CD, Carrilho E, Coltro WKT (2014) A handheld stamping process to fabricate microfluidic paper-based analytical devices with chemically modified surface for clinical assays. RSC Adv 4:37637–37644

    Article  Google Scholar 

  5. Evans E, Gabriel EFM, Benavidez TE, Coltro WKT, Garcia CD (2014) Modification of microfluidic paper-based devices with silica nanoparticles. Analyst 139:5560–5567

    Article  CAS  Google Scholar 

  6. Gomes HI, Sales MGF (2015) Development of paper-based color test-strip for drug detection in aquatic environment: application to oxytetracycline. Biosens Bioelectron 65:54–61

    Article  CAS  Google Scholar 

  7. Sicard C, Glen C, Aubie B, Wallace D, Jahanshahi-Anbuhi S, Pennings K, Daigger GT, Pelton R, Brennan JD, Filipe CD (2015) Tools for water quality monitoring and mapping using paper-based sensors and cell phones. Water Res 70:360–369

    Article  CAS  Google Scholar 

  8. Zhang Y, Zuo P, Ye B-C (2015) A low-cost and simple paper-based microfluidic device for simultaneous multiplex determination of different types of chemical contaminants in food. Biosens Bioelectron 68:14–19

    Article  CAS  Google Scholar 

  9. Chung J, Kim S, Bernhardt R, Pyun J (2005) Application of SPR biosensor for medical diagnostics of human hepatitis B virus (hHBV). Sens Actuators B 111:416–422

    Article  Google Scholar 

  10. Lin Z, Chen L, Zhang G, Liu Q, Qiu B, Cai Z, Chen G (2012) Label-free aptamer-based electrochemical impedance biosensor for 17β-estradiol. Analyst 137:819–822

    Article  CAS  Google Scholar 

  11. Coltro WKT, de Santis Neves R, de Jesus Motheo A, Da Silva JAF, Carrilho E (2014) Microfluidic devices with integrated dual-capacitively coupled contactless conductivity detection to monitor binding events in real time. Sens Actuators B 192:239–246

    Article  CAS  Google Scholar 

  12. Delaney TL, Zimin D, Rahm M, Weiss D, Wolfbeis OS, Mirsky VM (2007) Capacitive detection in ultrathin chemosensors prepared by molecularly imprinted grafting photopolymerization. Anal Chem 79:3220–3225

    Article  CAS  Google Scholar 

  13. Gamby J, Abid J-P, Abid M, Ansermet J-P, Girault H (2006) Nanowires network for biomolecular detection using contactless impedance tomoscopy technique. Anal Chem 78:5289–5295

    Article  CAS  Google Scholar 

  14. Lima RS, Piazzetta MH, Gobbi AL, Rodrigues-Filho UP, Nascente PA, Coltro WK, Carrilho E (2012) Contactless conductivity biosensor in microchip containing folic acid as bioreceptor. Lab Chip 12:1963–1966

    Article  CAS  Google Scholar 

  15. Martinez AW, Phillips ST, Butte MJ, Whitesides GM (2007) Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew Chem Int Ed 46:1318–1320

    Article  CAS  Google Scholar 

  16. Martinez AW, Phillips ST, Whitesides GM, Carrilho E (2009) Diagnostics for the developing world: microfluidic paper-based analytical devices. Anal Chem 82:3–10

    Article  Google Scholar 

  17. Pelton R (2009) Bioactive paper provides a low-cost platform for diagnostics. Trends Anal Chem 28:925–942

    Article  CAS  Google Scholar 

  18. Martinez AW, Phillips ST, Wiley BJ, Gupta M, Whitesides GM (2008) FLASH: a rapid method for prototyping paper-based microfluidic devices. Lab Chip 8:2146–2150

    Article  CAS  Google Scholar 

  19. Klasner S, Price A, Hoeman K, Wilson R, Bell K, Culbertson C (2010) Paper-based microfluidic devices for analysis of clinically relevant analytes present in urine and saliva. Anal Bioanal Chem 397:1821–1829

    Article  CAS  Google Scholar 

  20. Abe K, Suzuki K, Citterio D (2008) Inkjet-printed microfluidic multianalyte chemical sensing paper. Anal Chem 80:6928–6934

    Article  CAS  Google Scholar 

  21. Wang J, Monton MRN, Zhang X, Filipe CDM, Pelton R, Brennan JD (2014) Hydrophobic sol-gel channel patterning strategies for paper-based microfluidics. Lab Chip 14:691–695

    Article  CAS  Google Scholar 

  22. Carrilho E, Martinez AW, Whitesides GM (2009) Understanding wax printing: a simple micropatterning process for paper-based microfluidics. Anal Chem 81:7091–7095

    Article  CAS  Google Scholar 

  23. Nie J, Liang Y, Zhang Y, Le S, Li D, Zhang S (2013) One-step patterning of hollow microstructures in paper by laser cutting to create microfluidic analytical devices. Analyst 138:671–676

    Article  CAS  Google Scholar 

  24. Evans E, Gabriel EFM, Coltro WKT, Garcia CD (2014) Rational selection of substrates to improve color intensity and uniformity on microfluidic paper-based analytical devices. Analyst 139:2127–2132

    Article  CAS  Google Scholar 

  25. Zhang Y, Zhou C, Nie J, Le S, Qin Q, Liu F, Li Y, Li J (2014) Equipment-free quantitative measurement for microfluidic paper-based analytical devices fabricated using the principles of movable-type printing. Anal Chem 86:2005–2012

    Article  CAS  Google Scholar 

  26. Dungchai W, Chailapakul O, Henry CS (2009) Electrochemical detection for paper-based microfluidics. Anal Chem 81:5821–5826

    Article  CAS  Google Scholar 

  27. Noiphung J, Songjaroen T, Dungchai W, Henry CS, Chailapakul O, Laiwattanapaisal W (2013) Electrochemical detection of glucose from whole blood using paper-based microfluidic devices. Anal Chim Acta 788:39–45

    Article  CAS  Google Scholar 

  28. Santhiago M, Wydallis JB, Kubota LT, Henry CS (2013) Construction and electrochemical characterization of microelectrodes for improved sensitivity in paper-based analytical devices. Anal Chem 85:5233–5239

    Article  CAS  Google Scholar 

  29. Yamada K, Takaki S, Komuro N, Suzuki K, Citterio D (2014) An antibody-free microfluidic paper-based analytical device for the determination of tear fluid lactoferrin by fluorescence sensitization of Tb3+. Analyst 139:1637–1643

    Article  CAS  Google Scholar 

  30. Delaney JL, Hogan CF, Tian J, Shen W (2011) Electrogenerated chemiluminescence detection in paper-based microfluidic sensors. Anal Chem 83:1300–1306

    Article  CAS  Google Scholar 

  31. Yu J, Ge L, Huang J, Wang S, Ge S (2011) Microfluidic paper-based chemiluminescence biosensor for simultaneous determination of glucose and uric acid. Lab Chip 11:1286–1291

    Article  CAS  Google Scholar 

  32. Wleklinski M, Li Y, Bag S, Sarkar D, Narayanan R, Pradeep T, Cooks RG (2015) Zero volt paper spray ionization and its mechanism. Anal Chem 87:6786–6793

    Article  CAS  Google Scholar 

  33. Bag S, Hendricks PI, Reynolds JC, Cooks RG (2015) Biogenic aldehyde determination by reactive paper spray ionization mass spectrometry. Anal Chim Acta 860:37–42

    Article  CAS  Google Scholar 

  34. Apilux A, Siangproh W, Praphairaksit N, Chailapakul O (2012) Simple and rapid colorimetric detection of Hg(II) by a paper-based device using silver nanoplates. Talanta 97:388–394

    Article  CAS  Google Scholar 

  35. Wang H, Li Y-j, Wei J-f, Xu J-r, Wang Y-h, Zheng G-x (2014) Paper-based three-dimensional microfluidic device for monitoring of heavy metals with a camera cell phone. Anal Bioanal Chem 406:2799–2807

    Article  CAS  Google Scholar 

  36. Salles M, Meloni G, de Araujo W, Paixão T (2014) Explosive colorimetric discrimination using a smartphone, paper device and chemometrical approach. Anal Methods 6:2047–2052

    Article  CAS  Google Scholar 

  37. Souza FR, Duarte-Junior GF, Garcia PT, Coltro WKT (2014) Avaliação de dispositivos de captura de imagens digitais para detecção colorimétrica em microzonas impressas. Quim Nova 37:1171–1176

    Article  Google Scholar 

  38. Gabriel EFM, Coltro WKT, Garcia CD (2014) Fast and versatile fabrication of PMMA microchip electrophoretic devices by laser engraving. Electrophoresis 35:2325–2332

    Article  CAS  Google Scholar 

  39. Dungchai W, Chailapakul O, Henry CS (2010) Use of multiple colorimetric indicators for paper-based microfluidic devices. Anal Chim Acta 674:227–233

    Article  CAS  Google Scholar 

  40. Lin C-C, Tseng C-C, Chuang T-K, Lee D-S, Lee G-B (2011) Urine analysis in microfluidic devices. Analyst 136:2669–2688

    Article  CAS  Google Scholar 

  41. Ragginer C, Lechner A, Bernecker C, Horejsi R, Moller R, Wallner-Blazek M, Weiss S, Fazekas F, Schmidt R, Truschnig-Wilders M, Gruber HJ (2012) Reduced urinary glutamate levels are associated with the frequency of migraine attacks in females. Eur J Neurol 19:1146–1150

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wendell K. T. Coltro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Gabriel, E.F.M., Garcia, P.T., Evans, E., Cardoso, T.M.G., Garcia, C.D., Coltro , W.K.T. (2017). Enhanced Performance of Colorimetric Biosensing on Paper Microfluidic Platforms Through Chemical Modification and Incorporation of Nanoparticles. In: Rasooly, A., Prickril, B. (eds) Biosensors and Biodetection. Methods in Molecular Biology, vol 1571. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6848-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6848-0_20

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6846-6

  • Online ISBN: 978-1-4939-6848-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics