Rapid Detection of Microbial Contamination Using a Microfluidic Device

  • Mustafa Al-Adhami
  • Dagmawi Tilahun
  • Govind Rao
  • Chandrasekhar Gurramkonda
  • Yordan Kostov
Part of the Methods in Molecular Biology book series (MIMB, volume 1571)


A portable kinetics fluorometer is developed to detect viable cells which may be contaminating various samples. The portable device acts as a single-excitation, single-emission photometer that continuously measures fluorescence intensity of an indicator dye and plots it. The slope of the plot depends on the number of colony forming units per milliliter. The device uses resazurin as the indicator dye. Viable cells reduce resazurin to resorufin, which is more fluorescent. Photodiode is used to detect fluorescence change. The photodiode generated current proportional to the intensity of the light that reached it, and an op-amp is used in a transimpedance differential configuration to ensure amplification of the photodiode’s signal. A microfluidic chip is designed specifically for the device. It acts as a fully enclosed cuvette, which enhances the resazurin reduction rate. In tests, the E. coli-containing media are injected into the microfluidic chip and the device is able to detect the presence of E. coli in LB media based on the fluorescence change that occurred in the indicator dye. The device provides fast, accurate, and inexpensive means to optical detection of the presence of viable cells and could be used in the field in place of more complex methods, i.e., loop-meditated isothermal amplification of DNA (LAMP) to detect bacteria in pharmaceutical samples (Jimenez et al., J Microbiol Methods 41(3):259–265, 2000) or measuring the intrinsic fluorescence of the bacterial or yeast chromophores (Estes et al., Biosens Bioelectron 18(5):511–519, 2003).

Key words

Contamination detection device Resazurin Resorufin E. coli detection Microfluidic device Thermal bonding of PMMA 


  1. 1.
    Pharmtech.com (2015) An overview of rapid microbial-detection methods|Pharmaceutical technology. N.p. 2015. Web. 3 June 2015Google Scholar
  2. 2.
    Hoehl MM et al (2012) Rapid and robust detection methods for poison and microbial contamination. J Agric Food Chem 60(25):6349–6358CrossRefGoogle Scholar
  3. 3.
    Hobson NS, Tothill I, Turner AP (1996) Microbial detection. Biosens Bioelectron 11(5):455–477CrossRefGoogle Scholar
  4. 4.
    Fda.gov (2015) Archived BAM method: rapid methods for detecting foodborne pathogens. N.p. Web. 23 July 2015Google Scholar
  5. 5.
    Vogel SJ, Tank M, Goodyear N (2013) Variation in detection limits between bacterial growth phases and precision of an ATP bioluminescence system. Lett Appl Microbiol 58(4):370–375 WebCrossRefGoogle Scholar
  6. 6.
    Folsome CE (1964) Functional transformation in mammalian cell culture systems. Nature 202(4936):1023–1024 WebCrossRefGoogle Scholar
  7. 7.
    Celsis.com (2010) Quality control—microbial testing: rapid microbiological methods in lean manufacturing. N.p. Web. 23 July 2015Google Scholar
  8. 8.
    Pettit AC, Kropski JA, Castilho JL, Schmitz JE, Rauch CA, Mobley BC, Wang XJ, Spires SS, Pugh ME (2012) The index case for the fungal meningitis outbreak in the United States. N Engl J Med 367(22):2119–2125CrossRefGoogle Scholar
  9. 9.
    Gurramkonda C et al (2014) Fluorescence-based method and a device for rapid detection of microbial contamination. PDA J Pharm Sci Technol 68(2):164–171 WebCrossRefGoogle Scholar
  10. 10.
    Jimenez L, Smalls S, Ignar R (2000) Use of PCR analysis for detecting low levels of bacteria and mold contamination in pharmaceutical samples. J Microbiol Methods 41(3):259–265CrossRefGoogle Scholar
  11. 11.
    Ncbi.nlm.nih.gov 2015 Polymerase chain reaction (PCR). N.p. Web. 23 July 2015Google Scholar
  12. 12.
    Estes C, Duncan A, Wade B, Lloyd C, Ellis W Jr, Powers L (2003) Reagentless detection of microorganisms by intrinsic fluorescence. Biosens Bioelectron 18(5):511–519CrossRefGoogle Scholar
  13. 13.
    Brown NA (1990) Cell based assays. Developmental toxicity assays in vitro. Anal Proc 27(9):246 Web.CrossRefGoogle Scholar
  14. 14.
    Bionity.com (2015) Alamarblue® assay for assessment of cell proliferation using the Fluostar OPTIMA. N.p. Web. 23 July 2015Google Scholar
  15. 15.
    Boyce ST, Anderson BA, Rodriguez-Rilo HL (2006) Quantitative assay for quality assurance of human cells for clinical transplantation. Cell Transplant 15(2):169–174CrossRefGoogle Scholar
  16. 16.
    Boyce ST, Anderson BA, Rodriguez-Rilo HL (2006) Quantitative assay for quality assurance of human cells for clinical transplantation. Cell Transplant 15(2):169–174CrossRefGoogle Scholar
  17. 17.
    Nagaoka M, Hagiwara Y, Takemura K, Murakami Y, Li J, Duncan SA, Akaike T (2008) Design of the artificial acellular feeder layer for the efficient propagation of mouse embryonic stem cells. J Biol Chem 283(39):26468–26476CrossRefGoogle Scholar
  18. 18.
    Longhi MP, Wright K, Lauder SN, Nowell MA, Jones GW, Godkin AJ, Jones SA, Gallimore AM (2008) Interleukin-6 is crucial for recall of influenza-specific memory CD4 T cells. PLoS Pathog 4(2):e1000006CrossRefGoogle Scholar
  19. 19.
    Tanaka TQ, Williamson KC (2011) A malaria gametocytocidal assay using oxidoreduction indicator, alamarBlue. Mol Biochem Parasitol 177(2):160–163CrossRefGoogle Scholar
  20. 20.
    Hudman DA, Sargentini NJ (2013) Resazurin-based assay for screening bacteria for radiation sensitivity. Springerplus 2(1):55CrossRefGoogle Scholar
  21. 21.
    Fields RD, Lancaster MV (1993) Dual-attribute continuous monitoring of cell proliferation/cytotoxicity. Am Biotechnol Lab 11(4):48–50Google Scholar
  22. 22.
    Ahmed SA, Gogal RM Jr, Walsh JE (1994) A new rapid and simple non-radioactive assay to monitor and determine the proliferation of lymphocytes: an alternative to [3H]thymidine incorporation assay. J Immunol Methods 170(2):211–224CrossRefGoogle Scholar
  23. 23.
    Al-Nasiry S, Geusens N, Hanssens M, Luyten C, Pijnenborg R (2007) The use of Alamar Blue assay for quantitative analysis of viability, migration and invasion of choriocarcinoma cells. Hum Reprod 22(5):1304–1309CrossRefGoogle Scholar
  24. 24.
    Kostov Y et al (2014) Portable system for the detection of micromolar concentrations of glucose. Measurement Science and Technology 25(2):025701 WebCrossRefGoogle Scholar
  25. 25.
    Henderson RM, Selock N, Rao G 2012 Robust and easy microfluidic connections in acrylic. Chips and Tips. http://blogs.rsc.org/chipsandtips/2012/04/23/robust-and-easy-macrofluidic-connections-in-acrylic. Accessed 16 Sept 2015
  26. 26.
    Zhu X, Liu G, Guo Y, Tian Y (2007) Study of PMMA thermal bonding. Microsystem Technology 13:403–407CrossRefGoogle Scholar
  27. 27.
    Tran H, Wu W, Lee N (2013) Ethanol and UV-assisted instantaneous bonding of PMMA assemblies and tuning in bonding reversibility. Sens Actuators B 181:955–962CrossRefGoogle Scholar
  28. 28.
    Ng S, Tjeung R, Wang Z, Lu A, Rodriguez I, Rooij N (2007) Thermally activated solvent bonding of polymers. Microsystem Technology 14:753–759Google Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Mustafa Al-Adhami
    • 1
  • Dagmawi Tilahun
    • 1
  • Govind Rao
    • 1
  • Chandrasekhar Gurramkonda
    • 1
  • Yordan Kostov
    • 1
  1. 1.University of Maryland Baltimore CountyBaltimoreUSA

Personalised recommendations