Skip to main content

Glucose-Responsive Insulin Delivery by Microneedle-Array Patches Loaded with Hypoxia-Sensitive Vesicles

  • Protocol
  • First Online:
Biomedical Nanotechnology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1570))

Abstract

In this chapter, we describe the preparation of glucose-responsive vesicles (GRVs) and the fabrication of GRV-loaded microneedle-array patches for insulin delivery. The GRVs were formed of hypoxia-sensitive hyaluronic acid (HS-HA), the synthesis of which is presented in detail. We also describe the procedure to evaluate the in vivo efficacy of this smart patch in a mouse model of chemically induced type 1 diabetes through transcutaneous administration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mo R et al (2014) Emerging micro-and nanotechnology based synthetic approaches for insulin delivery. Chem Soc Rev 43(10):3595–3629

    Article  CAS  Google Scholar 

  2. Veiseh O et al (2015) Managing diabetes with nanomedicine: challenges and opportunities. Nat Rev Drug Discov 14(1):45–57

    Article  CAS  Google Scholar 

  3. Owens DR, Zinman B, Bolli GB (2001) Insulins today and beyond. Lancet 358(9283):739–746

    Article  CAS  Google Scholar 

  4. Bratlie KM et al (2012) Materials for diabetes therapeutics. Adv Healthc Mater 1(3):267–284

    Article  CAS  Google Scholar 

  5. Ohkubo Y et al (1995) Intensive insulin therapy prevents the progression of diabetic microvascular complications in Japanese patients with non-insulin-dependent diabetes mellitus: a randomized prospective 6-year study. Diabetes Res Clin Pract 28(2):103–117

    Article  CAS  Google Scholar 

  6. Ravaine V, Ancla C, Catargi B (2008) Chemically controlled closed-loop insulin delivery. J Control Release 132(1):2–11

    Article  CAS  Google Scholar 

  7. Gu Z et al (2013) Injectable nano-network for glucose-mediated insulin delivery. ACS Nano 7(5):4194–4201

    Article  CAS  Google Scholar 

  8. Gu Z et al (2013) Glucose-responsive microgels integrated with enzyme nanocapsules for closed-loop insulin delivery. ACS Nano 7(8):6758–6766

    Article  CAS  Google Scholar 

  9. Tai W et al (2014) Bio-inspired synthetic nanovesicles for glucose-responsive release of insulin. Biomacromolecules 15(10):3495–3502

    Article  CAS  Google Scholar 

  10. Chou DH-C et al (2015) Glucose-responsive insulin activity by covalent modification with aliphatic phenylboronic acid conjugates. Proc Natl Acad Sci 112(8):2401–2406

    Article  CAS  Google Scholar 

  11. Kim SW et al (1990) Self-regulated glycosylated insulin delivery. J Control Release 11(1):193–201

    CAS  Google Scholar 

  12. Yu J et al (2015) Microneedle-array patches loaded with hypoxia-sensitive vesicles provide fast glucose-responsive insulin delivery. Proc Natl Acad Sci 112(27):8260–8265

    Article  CAS  Google Scholar 

  13. Nunn A, Linder K, Strauss HW (1995) Nitroimidazoles and imaging hypoxia. Eur J Nucl Med 22(3):265–280

    Article  CAS  Google Scholar 

  14. Krohn KA, Link JM, Mason RP (2008) Molecular imaging of hypoxia. J Nucl Med 49(Suppl 2):129S–148S

    Article  CAS  Google Scholar 

  15. Prausnitz MR (2004) Microneedles for transdermal drug delivery. Adv Drug Deliv Rev 56(5):581–587

    Article  CAS  Google Scholar 

  16. Yang SY et al (2013) A bio-inspired swellable microneedle adhesive for mechanical interlocking with tissue. Nat Commun 4:1702

    Article  Google Scholar 

  17. Heo YJ et al (2011) Long-term in vivo glucose monitoring using fluorescent hydrogel fibers. Proc Natl Acad Sci 108(33):13399–13403

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the grants from the American Diabetes Association (ADA) to Z.G. (1-14-JF-29 and 1-15-ACE-21) and a grant from NC TraCS, NIH’s Clinical and Translational Science Awards (CTSA, NIH grant 1UL1TR001111) at UNC-CH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Gu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Yu, J., Zhang, Y., Gu, Z. (2017). Glucose-Responsive Insulin Delivery by Microneedle-Array Patches Loaded with Hypoxia-Sensitive Vesicles. In: Petrosko, S., Day, E. (eds) Biomedical Nanotechnology. Methods in Molecular Biology, vol 1570. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6840-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6840-4_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6838-1

  • Online ISBN: 978-1-4939-6840-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics