Skip to main content

NanoScript: A Versatile Nanoparticle-Based Synthetic Transcription Factor for Innovative Gene Manipulation

  • Protocol
  • First Online:
Biomedical Nanotechnology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1570))

Abstract

Cellular reprogramming and stem cell-based therapies have shown tremendous potential in the field of regenerative medicine. To that end, developing tools to control stem cell fate is an attractive area of research for replacing damaged and diseased cells and reestablishing functional connections for tissue repair. Transcription factor (TFs) proteins are well known to regulate gene expression and direct stem cell fate. Inspired by natural TFs, NanoScript, a nanoparticle (NP)-based platform, mimics TFs to afford control over gene expression and stem cell fate for regenerative medicine. Here, we describe the construction of the NanoScript platform, which is designed with tunable properties to replicate the structure and function of TFs to bind to specific portions of the genome and regulate gene expression in a way that does not involve viral delivery.

The original version of this chapter was revised. An erratum to the chapter can be found at DOI: 10.1007/978-1-4939-6840-4_23

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-1-4939-6840-4_23

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reik W (2007) Stability and flexibility of epigenetic gene regulation in mammalian development. Nature 447:425–432

    Article  CAS  Google Scholar 

  2. Spitz F, Furlong EEM (2012) Transcription factors: from enhancer binding to developmental control. Nat Rev Genet 13:613–626

    Article  CAS  Google Scholar 

  3. Patel S, Jung D, Yin PT, Carlton P, Yamamoto M, Bando T, Sugiyama H, Lee K-B (2014) NanoScript: a nanoparticle-based artificial transcription factor for effective gene regulation. ACS Nano 9:8959–8967

    Article  Google Scholar 

  4. Patel S, Yin PT, Sugiyama H, Lee K-B (2015) Inducing stem cell myogenesis using NanoScript. ACS Nano 9:6909–6917

    Article  CAS  Google Scholar 

  5. Patel S, Pongkulapa T, Yin PT, Pandian G, Rathnam C, Bando T, Vaijayanthi T, Sugiyama H, Lee K-B (2015) Integrating epigenetic modulators into NanoScript for enhanced chondrogenesis of stem cells. J Am Chem Soc 137:4598–4601

    Article  CAS  Google Scholar 

  6. Patel S, Chueng STD, Yin PT, Dardir K, Song Z, Pasquale N, Kwan K, Sugiyama H, Lee K-B (2015) Induction of stem-cell-derived functional neurons by NanoScript-based gene repression. Angew Chem Int Ed Engl 54:11983–11988

    Article  CAS  Google Scholar 

  7. Giljohann DA, Seferos DS, Daniel WL, Massich MD, Patel PC, Mirkin CA (2010) Gold nanoparticles for biology and medicine. Angew Chem Int Ed Engl 49:3280–3294

    Article  CAS  Google Scholar 

  8. Colombo M, Carregal-Romero S, Casula MF, Gutiérrez L, Morales MP, Böhm IB, Heverhagen JT, Prosperi D, Parak WJ (2012) Biological applications of magnetic nanoparticles. Chem Soc Rev 41:4306–4334

    Article  CAS  Google Scholar 

  9. Lim J, Majetich SA (2013) Composite magnetic–plasmonic nanoparticles for biomedicine: manipulation and imaging. Nano Today 8:98–113

    Article  CAS  Google Scholar 

  10. Robertson KD (2002) DNA methylation and chromatin: unraveling the tangled web. Oncogene 21:5361–5379

    Article  CAS  Google Scholar 

  11. Dervan PB, Edelson BS (2003) Recognition of the DNA minor groove by pyrrole-imidazole polyamides. Curr Opin Struct Biol 13:284–299

    Article  CAS  Google Scholar 

  12. Melander C, Burnett R, Gottesfeld JM (2004) Regulation of gene expression with pyrrole_imidazole polyamides. J Biotechnol 112:195–220

    Article  CAS  Google Scholar 

  13. Hoelz A, Debler EW, Blobel G (2011) The structure of the nuclear pore complex. Annu Rev Biochem 80:613–643

    Article  CAS  Google Scholar 

  14. Zaret KS, Carroll JS (2011) Pioneer transcription factors: establishing competence for gene expression. Genes Dev 25:2227–2241

    Article  CAS  Google Scholar 

  15. Portela A, Esteller M (2010) Epigenetic modifications and human disease. Nat Biotechnol 28:1057–1068

    Article  CAS  Google Scholar 

  16. Lévy R, Shaheen U, Cesbron Y, Sée V (2010) Gold nanoparticles delivery in mammalian live cells: a critical review. Nano Rev 1. doi:10.3402/nano.v1i0.4889

  17. Ter-Avetisyan G et al (2009) Cell entry of arginine-rich peptides is independent of endocytosis. J Biol Chem 284:3370–3378

    Article  CAS  Google Scholar 

  18. Newmeyer DD, Forbes DJ (1988) Nuclear import can be separated into distinct steps in vitro: nuclear pore binding and translocation. Cell 52:641–653

    Article  CAS  Google Scholar 

  19. Pilch DS, Poklar N, Baird EE, Dervan PB, Breslauer KJ (1999) The thermodynamics of polyamide−DNA recognition: hairpin polyamide binding in the Minor Groove of duplex DNA. Biochemistry 38:2143–2151

    Article  CAS  Google Scholar 

  20. Nyanguile O, Uesugi M, Austin DJ, Verdine GL (1997) A nonnatural transcriptional coactivator. Proc Natl Acad Sci 94:13402–13406

    Article  CAS  Google Scholar 

  21. Chen G, Courey AJ (2000) Groucho/TLE family proteins and transcriptional repression. Gene 249:1–16

    Article  CAS  Google Scholar 

  22. Shah BP, Pasquale N, De G, Tan T, Ma J, Lee K-B (2014) Core–shell nanoparticle-based peptide therapeutics and combined hyperthermia for enhanced cancer cell apoptosis. ACS Nano 8:9379–9387

    Article  CAS  Google Scholar 

  23. Sun S, Zeng H, Robinson DB, Raoux S, Rice PM, Wang SX, Li G (2004) Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. J Am Chem Soc 126:273–279

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ki-Bum Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Dardir, K., Rathnam, C., Lee, KB. (2017). NanoScript: A Versatile Nanoparticle-Based Synthetic Transcription Factor for Innovative Gene Manipulation. In: Petrosko, S., Day, E. (eds) Biomedical Nanotechnology. Methods in Molecular Biology, vol 1570. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6840-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6840-4_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6838-1

  • Online ISBN: 978-1-4939-6840-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics