Enzyme-Responsive Nanoparticles for the Treatment of Disease

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1570)

Abstract

Nanomedicine for cancer therapy seeks to treat malignancies through the selective accumulation of therapeutics in diseased tissue. Nanoparticles offer the convenience of high drug loading capacities and can be readily decorated with targeting moieties, drugs, and/or diagnostics. Our lab has pioneered a new tissue targeting strategy where enhanced accumulation of nanomaterials occurs as a result of morphology changes to the material in response to overexpressed enzymes in diseased tissues. Herein, we describe the general strategy for the preparation of these enzyme-responsive nanoparticles (ER-NPs) for therapeutic applications.

Key words

Nanoparticles Enzyme-responsive nanoparticles Self-assembly Nanomedicine 

References

  1. 1.
    Maeda H, Nakamura H, Fang J (2013) The EPR effect for macromolecular drug delivery to solid tumors: improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv Drug Deliv Rev 65(1):71–79. doi:10.1016/j.addr.2012.10.002 CrossRefGoogle Scholar
  2. 2.
    Kobayashi H, Watanabe R, Choyke PL (2014) Improving conventional enhanced permeability and retention (EPR) effects; what is the appropriate target? Theranostics 4(1):81–89. doi:10.7150/thno.7193 CrossRefGoogle Scholar
  3. 3.
    Torchilin V (2011) Tumor delivery of macromolecular drugs based on the EPR effect. Adv Drug Deliv Rev 63(3):131–135. doi:10.1016/j.addr.2010.03.011 CrossRefGoogle Scholar
  4. 4.
    Pasqualini R, Koivunen E, Kain R, Lahdenranta J, Sakamoto M, Stryhn A, Ashmun RA, Shapiro LH, Arap W, Ruoslahti E (2000) Aminopeptidase N is a receptor for tumor-homing peptides and a target for inhibiting angiogenesis. Cancer Res 60(3):722–727Google Scholar
  5. 5.
    Low PS, Antony AC (2004) Folate receptor-targeted drugs for cancer and inflammatory diseases. Adv Drug Deliv Rev 56(8):1055–1058. doi:10.1016/j.addr.2004.02.003 CrossRefGoogle Scholar
  6. 6.
    Arap W, Pasqualini R, Ruoslahti E (1998) Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science 279(5349):377–380. doi:10.1126/science.279.5349.377 CrossRefGoogle Scholar
  7. 7.
    Calderón M, Welker P, Licha K, Fichtner I, Graeser R, Haag R, Kratz F (2011) Development of efficient acid cleavable multifunctional prodrugs derived from dendritic polyglycerol with a poly(ethylene glycol) shell. J Control Release 151(3):295–301. doi:10.1016/j.jconrel.2011.01.017 CrossRefGoogle Scholar
  8. 8.
    Du J-Z, Du X-J, Mao C-Q, Wang J (2011) Tailor-made dual pH-sensitive polymer–doxorubicin nanoparticles for efficient anticancer drug delivery. J Am Chem Soc 133(44):17560–17563. doi:10.1021/ja207150n CrossRefGoogle Scholar
  9. 9.
    Doncom KEB, Hansell CF, Theato P, O’Reilly RK (2012) pH-switchable polymer nanostructures for controlled release. Polym Chem 3(10):3007–3015. doi:10.1039/C2PY20545A CrossRefGoogle Scholar
  10. 10.
    Liu G, Wang X, Hu J, Zhang G, Liu S (2014) Self-immolative polymersomes for high-efficiency triggered release and programmed enzymatic reactions. J Am Chem Soc 136(20):7492–7497. doi:10.1021/ja5030832 CrossRefGoogle Scholar
  11. 11.
    Phillips DJ, Patterson JP, O’Reilly RK, Gibson MI (2014) Glutathione-triggered disassembly of isothermally responsive polymer nanoparticles obtained by nanoprecipitation of hydrophilic polymers. Polym Chem 5(1):126–131. doi:10.1039/C3PY00991B CrossRefGoogle Scholar
  12. 12.
    Ryu J-H, Chacko RT, Jiwpanich S, Bickerton S, Babu RP, Thayumanavan S (2010) Self-cross-linked polymer nanogels: A versatile nanoscopic drug delivery platform. J Am Chem Soc 132(48):17227–17235. doi:10.1021/ja1069932 CrossRefGoogle Scholar
  13. 13.
    Blum AP, Kammeyer JK, Rush AM, Callmann CE, Hahn ME, Gianneschi NC (2015) Stimuli-responsive nanomaterials for biomedical applications. J Am Chem Soc 137(6):2140–2154. doi:10.1021/ja510147n CrossRefGoogle Scholar
  14. 14.
    Torchilin VP (2010) Passive and active drug targeting: Drug delivery to tumors as an example. In: Schäfer-Korting M (ed) Drug Delivery. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 3–53. doi:10.1007/978-3-642-00477-3_1 CrossRefGoogle Scholar
  15. 15.
    Callmann CE, Barback CV, Thompson MP, Hall DJ, Mattrey RF, Gianneschi NC (2015) Therapeutic enzyme-responsive nanoparticles for targeted delivery and accumulation in tumors. Adv Mater 27(31):4611–4615. doi:10.1002/adma.201501803 CrossRefGoogle Scholar
  16. 16.
    Chien M-P, Carlini AS, Hu D, Barback CV, Rush AM, Hall DJ, Orr G, Gianneschi NC (2013) Enzyme-directed assembly of nanoparticles in tumors monitored by in vivo whole animal imaging and ex vivo super-resolution fluorescence imaging. J Am Chem Soc 135(50):18710–18713. doi:10.1021/ja408182p CrossRefGoogle Scholar
  17. 17.
    Chien M-P, Thompson MP, Barback CV, Ku T-H, Hall DJ, Gianneschi NC (2013) Enzyme-directed assembly of a nanoparticle probe in tumor tissue. Adv Mater 25(26):3599–3604. doi:10.1002/adma.201300823 CrossRefGoogle Scholar
  18. 18.
    Chien M-P, Thompson MP, Lin EC, Gianneschi NC (2012) Fluorogenic enzyme-responsive micellar nanoparticles. Chem Sci 3(9):2690–2694. doi:10.1039/C2SC20165H CrossRefGoogle Scholar
  19. 19.
    Daniel KB, Callmann CE, Gianneschi NC, Cohen SM (2016) Dual-responsive nanoparticles release cargo upon exposure to matrix metalloproteinase and reactive oxygen species. Chem Commun 52(10):2126–2128. doi:10.1039/C5CC09164K CrossRefGoogle Scholar
  20. 20.
    Nguyen MM, Carlini AS, Chien M-P, Sonnenberg S, Luo C, Braden RL, Osborn KG, Li Y, Gianneschi NC, Christman KL (2015) Enzyme-responsive nanoparticles for targeted accumulation and prolonged retention in heart tissue after myocardial infarction. Adv Mater 27(37):5547–5552. doi:10.1002/adma.201502003 CrossRefGoogle Scholar
  21. 21.
    Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2(3):161–174 http://www.nature.com/nrc/journal/v2/n3/suppinfo/nrc745_S1.html CrossRefGoogle Scholar
  22. 22.
    Gialeli C, Theocharis AD, Karamanos NK (2011) Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting. FEBS J 278(1):16–27. doi:10.1111/j.1742-4658.2010.07919.x CrossRefGoogle Scholar
  23. 23.
    Kessenbrock K, Plaks V, Werb Z (2010) Matrix Metalloproteinases: Regulators of the Tumor Microenvironment. Cell 141(1):52–67. doi:10.1016/j.cell.2010.03.015 CrossRefGoogle Scholar
  24. 24.
    Rundhaug JE (2003) Matrix Metalloproteinases, angiogenesis, and cancer: commentary re: A. C. Lockhart et al., Reduction of wound angiogenesis in patients treated with BMS-275291, a broad spectrum matrix metalloproteinase inhibitor. Clin. Cancer Res., 9: 00–00, 2003. Clinical Cancer Research 9(2):551–554.Google Scholar
  25. 25.
    Creemers EEJM, Cleutjens JPM, Smits JFM, Daemen MJAP (2001) Matrix metalloproteinase inhibition after myocardial infarction: A new approach to prevent heart failure? Circ Res 89(3):201–210. doi:10.1161/hh1501.094396 CrossRefGoogle Scholar
  26. 26.
    Phatharajaree W, Phrommintikul A, Chattipakorn N (2007) Matrix metalloproteinases and myocardial infarction. Can J Cardiol 23(9):727–733CrossRefGoogle Scholar
  27. 27.
    Spinale FG (2007) Myocardial matrix remodeling and the matrix metalloproteinases: Influence on cardiac form and function. Physiol Rev 87(4):1285–1342. doi:10.1152/physrev.00012.2007 CrossRefGoogle Scholar
  28. 28.
    Vanhoutte D, Schellings M, Pinto Y, Heymans S (2006) Relevance of matrix metalloproteinases and their inhibitors after myocardial infarction: a temporal and spatial window. Cardiovasc Res 69(3):604–613. doi:10.1016/j.cardiores.2005.10.002 CrossRefGoogle Scholar
  29. 29.
    Bielawski CW, Grubbs RH (2000) Highly efficient ring-opening metathesis polymerization (ROMP) using new ruthenium catalysts containing N-heterocyclic carbene ligands. Angew Chem Int Ed 39(16):2903–2906. doi:10.1002/1521-3773(20000818)39:16<2903::AID-ANIE2903>3.0.CO;2-Q CrossRefGoogle Scholar
  30. 30.
    Bielawski CW, Grubbs RH (2007) Living ring-opening metathesis polymerization. Prog Polym Sci 32(1):1–29. doi:10.1016/j.progpolymsci.2006.08.006 CrossRefGoogle Scholar
  31. 31.
    Leitgeb A, Wappel J, Slugovc C (2010) The ROMP toolbox upgraded. Polymer 51(14):2927–2946. doi:10.1016/j.polymer.2010.05.002 CrossRefGoogle Scholar
  32. 32.
    Sanford MS, Love JA, Grubbs RH (2001) A versatile precursor for the synthesis of new ruthenium olefin metathesis catalysts. Organometallics 20(25):5314–5318. doi:10.1021/om010599r CrossRefGoogle Scholar
  33. 33.
    Sanford MS, Love JA, Grubbs RH (2001) Mechanism and activity of ruthenium olefin metathesis catalysts. J Am Chem Soc 123(27):6543–6554. doi:10.1021/ja010624k CrossRefGoogle Scholar
  34. 34.
    Scholl M, Ding S, Lee CW, Grubbs RH (1999) Synthesis and activity of a new generation of ruthenium-based olefin metathesis catalysts coordinated with 1,3-Dimesityl-4,5-dihydroimidazol-2-ylidene Ligands. Org Lett 1(6):953–956. doi:10.1021/ol990909q CrossRefGoogle Scholar
  35. 35.
    Conrad RM, Grubbs RH (2009) Tunable, temperature-responsive polynorbornenes with side chains based on an elastin peptide sequence. Angew Chem Int Ed 48(44):8328–8330. doi:10.1002/anie.200903888 CrossRefGoogle Scholar
  36. 36.
    Thompson MP, Randolph LM, James CR, Davalos AN, Hahn ME, Gianneschi NC (2014) Labelling polymers and micellar nanoparticles via initiation, propagation and termination with ROMP. Polym Chem 5(6):1954–1964. doi:10.1039/C3PY01338C CrossRefGoogle Scholar
  37. 37.
    Kammeyer JK, Blum AP, Adamiak L, Hahn ME, Gianneschi NC (2013) Polymerization of protecting-group-free peptides via ROMP. Polym Chem 4(14):3929–3933. doi:10.1039/C3PY00526G CrossRefGoogle Scholar
  38. 38.
    Blum AP, Kammeyer JK, Yin J, Crystal DT, Rush AM, Gilson MK, Gianneschi NC (2014) Peptides displayed as high density brush polymers resist proteolysis and retain bioactivity. J Am Chem Soc 136(43):15422–15437. doi:10.1021/ja5088216 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Department of Chemistry and BiochemistryUniversity of California–San DiegoLa JollaUSA

Personalised recommendations