Advertisement

Assessment of Cytokinin-Induced Immunity Through Quantification of Hyaloperonospora arabidopsidis Infection in Arabidopsis thaliana

  • Ruth A. Watson
  • Cristiana T. ArguesoEmail author
Protocol
  • 1.1k Downloads
Part of the Methods in Molecular Biology book series (MIMB, volume 1569)

Abstract

Cytokinins have been shown to regulate plant immunity. Application of high levels of cytokinin to plants leads to decreased susceptibility to pathogens. In this chapter, we describe a fast and accurate protocol for assessment of cytokinin-induced immunity in Arabidopsis plants against an oomycete plant pathogen.

Key words

Cytokinins Immunity Defense responses Hyaloperonospora arabidopsidis Arabidopsis 

Notes

Acknowledgments

We thank Phil Turk from the Franklin Graybill Statistical Laboratory at Colorado State University for the help with statistical analysis and Bettina Broeckling for comments on the manuscript.

References

  1. 1.
    Choi J, Huh SU, Kojima M, Sakakibara H, Paek K-H, Hwang I (2010) The cytokinin-activated transcription factor ARR2 promotes plant immunity via TGA3/NPR1-dependent salicylic acid signaling in Arabidopsis. Dev Cell 19:284–295CrossRefPubMedGoogle Scholar
  2. 2.
    Argueso CT, Ferreira FJ, Epple P, To JPC, Hutchison CE, Schaller GE, Dangle JL, Kieber JJ (2012) Two-component elements mediate interactions between cytokinin and salicylic acid in plant immunity. PLoS Genet 8:e1002448CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Naseem M, Philippi N, Hussain A, Wangorsch G, Ahmed N, Dandekar T (2012) Integrated systems view on networking by hormones in Arabidopsis immunity reveals multiple crosstalk for cytokinin. Plant Cell 24:1793–1814CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Grosskinsky DK, Naseem M, Abdelmohsen UR, Plickert N, Engelke T, Zeier J, Novak O, Strnad M, Pfeifhofer H, Van der Graaf E, Simon U, Roitsch T (2011) Cytokinins mediate resistance against Pseudomonas syringae in tobacco through increased antimicrobial phytoalexin synthesis independent of salicylic acid signaling. Plant Physiol 157:815–830CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Jiang C-J, Shimono M, Sugano S, Kojima M, Liu X, Inoue H, Sakakibara H, Takatsuji H (2013) Cytokinins act synergistically with salicylic acid to activate defense gene expression in rice. Mol Plant Microbe Interact 26:287–296CrossRefPubMedGoogle Scholar
  6. 6.
    Conrath U, Beckers GJM, Langenbach CJG, Jaskiewicz MR (2015) Priming for enhanced defense. Annu Rev Phytopathol 53:97–119CrossRefPubMedGoogle Scholar
  7. 7.
    Coates ME, Beynon JL (2010) Hyaloperonospora arabidopsidis as a pathogen model. Annu Rev Phytopathol 48:329–345CrossRefPubMedGoogle Scholar
  8. 8.
    Holub EB, Beynon LJ, Crute IR (1994) Phenotypic and genotypic characterization of interactions between isolates of Peronospora parasitica and accessions of Arabidopsis thaliana. Mol Plant Microbe Interact 7:223–239CrossRefGoogle Scholar
  9. 9.
    Feys BJ, Moisan LJ, Newman MA, Parker JE (2001) Direct interaction between the Arabidopsis disease resistance signaling proteins, EDS1 and PAD4. EMBO J 20:5400–5411CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Tome D, Steinbrenner J, Beynon JL (2014) A growth quantification assay for Hyaloperonospora arabidopsidis isolates in Arabidopsis thaliana. Methods Mol Biol 1127:145–156CrossRefPubMedGoogle Scholar
  11. 11.
    McDowell JM, Hoff T, Anderson RG, Deegan D (2011) Propagation, storage, and assays with Hyaloperonospora arabidopsidis: a model oomycete pathogen of Arabidopsis. Methods Mol Biol 712:137–151CrossRefPubMedGoogle Scholar
  12. 12.
    Anderson RG, McDowell JM (2015) A PCR assay for the quantification of growth of the oomycete pathogen Hyaloperonospora arabidopsidis in Arabidopsis thaliana. Mol Plant Pathol 16:893–898CrossRefPubMedGoogle Scholar
  13. 13.
    Zheng X-Y, Zhou M, Yoo H, Pruneda-Paz JL, Spivey NW, Kay SA, Dong X (2015) Spatial and temporal regulation of biosynthesis of the plant immune signal salicylic acid. Proc Natl Acad Sci U S A 112:9166–9173CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Wang W, Barnaby JY, Tada Y, Li H, Toer M, Caldelari D, Lee D-U, Fu X-D, Dong X (2011) Timing of plant immune responses by a central circadian regulator. Nature 470:110–U126CrossRefPubMedGoogle Scholar
  15. 15.
    Zhang C, Xie Q, Anderson RG, Ng G, Seitz NC, Peterson T, McClung CR, McDowell JM, Kong D, Kwak JM, Lu H (2013) Crosstalk between the circadian clock and innate immunity in Arabidopsis. PLoS Pathog 9:e1003370Google Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Department of Bioagricultural Sciences and Pest ManagementColorado State UniversityFort CollinsUSA

Personalised recommendations