Monitoring of Crosstalk Between Jasmonate and Auxin in the Framework of Plant Stress Responses of Roots

  • Víctor Carrasco Loba
  • Marta-Marina Pérez Alonso
  • Stephan PollmannEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1569)


Over the last few years, it became more and more evident that plant hormone action is to great parts determined through their sophisticated crosstalk, rather than by their isolated activities. Thus, the parallel analysis of interconnected phytohormones in only very small amounts of tissue developed to an important issue in the field of plant sciences. In the following, a highly sensitive and accurate method is described for the quantitative analysis of the plant hormones jasmonic acid and indole-3-acetic acid in the model plant Arabidopsis thaliana. The described methodology is, however, not limited to the analysis of Arabidopsis samples but can also be applied to other plant species. The presented method is optimized for the working up of as little as 20–50 mg of plant tissue. Thus, it is well suited for the analysis of plant hormone contents in plant tissue of only little biomass, such as roots. The presented protocol facilitates the implementation of the method into other laboratories that have access to appropriate laboratory equipment and comparable state-of-the-art gas chromatography-mass spectrometry (GC-MS) technology.

Key words

Jasmonic acid Auxin Crosstalk Electron impact tandem mass spectrometry (EI-GC-MS/MS) Solid-phase extraction Stable isotopes Derivatization Plant hormone analysis 



This work was supported by MINECO grant BFU2014-55575-R and Marie Curie career integration grant FP7-PEOPLE-CIG-2011 303744 to SP.


  1. 1.
    Davies PJ (ed) (2010) Plant hormones. Biosynthesis, signal transduction, action! 3rd edn. Kluwer, DordrechtGoogle Scholar
  2. 2.
    Kazan K, Manners JM (2008) Jasmonate signaling: toward an integrated view. Plant Physiol 146:1459–1468CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Wolters H, Jürgens G (2009) Survival of the flexible: hormonal growth control and adaptation in plant development. Nat Rev Genet 10:305–317CrossRefPubMedGoogle Scholar
  4. 4.
    Hoffmann M, Hentrich M, Pollmann S (2011) Auxin-oxylipin crosstalk: relationship of antagonists. J Integr Plant Biol 53:429–445CrossRefPubMedGoogle Scholar
  5. 5.
    Tiryaki I, Staswick PE (2002) An Arabidopsis mutant defective in jasmonate response is allelic to the auxin-signaling mutant axr1. Plant Physiol 130:887–894CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Ren C, Pan J, Peng W, Genschik P, Hobbie L, Hellmann H, Estelle M, Gao B, Peng J, Sun C, Xie D (2005) Point mutations in Arabidopsis Cullin1 reveal its essential role in jasmonate response. Plant J 42:514–524CrossRefPubMedGoogle Scholar
  7. 7.
    Szemenyei H, Hannon M, Long JA (2008) TOPLESS mediates auxin-dependent transcriptional repression during Arabidopsis embryogenesis. Science 319:1384–1386CrossRefPubMedGoogle Scholar
  8. 8.
    Dombrecht B, Xue GP, Sprague SJ, Kirkegaard JA, Ross JJ, Reid JB, Fitt GP, Sewelam N, Schenk PM, Manners JM, Kazan K (2007) MYC2 differentially modulates diverse jasmonate-dependent functions in Arabidopsis. Plant Cell 19:2225–2245CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Sun J, Xu Y, Ye S, Jiang H, Chen Q, Liu F, Zhou W, Chen R, Li X, Tietz O, Wu X, Cohen JD, Palme K, Li C (2009) Arabidopsis ASA1 is important for jasmonate-mediated regulation of auxin biosynthesis and transport during lateral root formation. Plant Cell 21:1495–1511CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Sun J, Chen Q, Qi L, Jiang H, Li S, Xu Y, Liu F, Zhou W, Pan J, Li X, Palme K, Li C (2011) Jasmonate modulates endocytosis and plasma membrane accumulation of the Arabidopsis PIN2 protein. New Phytol 191:360–375CrossRefPubMedGoogle Scholar
  11. 11.
    Hentrich M, Böttcher C, Düchting P, Cheng Y, Zhao Y, Berkowitz O, Masle J, Medina J, Pollmann S (2013) The jasmonic acid signaling pathway is linked to auxin homeostasis through the modulation of YUCCA8 and YUCCA9 gene expression. Plant J 74:626–637CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Hentrich M, Sanchez-Parra B, Perez Alonso MM, Carrasco Loba V, Carrillo L, Vicente-Carbajosa J, Medina J, Pollmann S (2013) YUCCA8 and YUCCA9 overexpression reveals a link between auxin signaling and lignification through the induction of ethylene biosynthesis. Plant Signal Behav 8:e26363CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Lee Y-C, Johnson JM, Chien C-T, Sun C, Cai D, Lou B, Oelmüller R, Yeh K-W (2011) Growth promotion of Chinese cabbage and Arabidopsis by Piriformospora indica is not stimulated by mycelium-synthesized auxin. Mol Plant Microbe Interact 24:421–431CrossRefPubMedGoogle Scholar
  14. 14.
    Dong S, Tian Z, Chen PJ, Senthil Kumar R, Shen CH, Cai D, Oelmüllar R, Yeh KW (2013) The maturation zone is an important target of Piriformospora indica in Chinese cabbage roots. J Exp Bot 64:4529–4540CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Müller A, Düchting P, Weiler EW (2002) A multiplex GC-MS/MS technique for the sensitive and quantitative single-run analysis of acidic phytohormones and related compounds, and its application to Arabidopsis thaliana. Planta 216:44–56CrossRefPubMedGoogle Scholar
  16. 16.
    Schmelz EA, Engelberth J, Alborn HT, O’Donnell P, Sammons M, Toshima H, Tumlinson JH III (2003) Simultaneous analysis of phytohormones, phytotoxins, and volatile organic compounds in plants. Proc Natl Acad Sci U S A 100:10552–10557CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Birkemeyer C, Kolasa A, Kopka J (2003) Comprehensive chemical derivatization for gas chromatography-mass spectrometry-based multi-targeted profiling of the major phytohormones. J Chromatogr A 993:89–102CrossRefPubMedGoogle Scholar
  18. 18.
    Chiwocha SD, Abrams SR, Ambrose SJ, Cutler AJ, Loewen M, Ross AR, Kermode AR (2003) A method for profiling classes of plant hormones and their metabolites using liquid chromatography-electrospray ionization tandem mass spectrometry: an analysis of hormone regulation of thermodormancy of lettuce (Lactuca sativa L.) seeds. Plant J 35:405–417CrossRefPubMedGoogle Scholar
  19. 19.
    Ziegler J, Qwegwer J, Schubert M, Erickson JL, Schattat M, Burstenbinder K, Grubb CD, Abel S (2014) Simultaneous analysis of apolar phytohormones and 1-aminocyclopropan-1-carboxylic acid by high performance liquid chromatography/electrospray negative ion tandem mass spectrometry via 9-fluorenylmethoxycarbonyl chloride derivatization. J Chromatogr A 1362:102–109CrossRefPubMedGoogle Scholar
  20. 20.
    Strehmel N, Böttcher C, Schmidt S, Scheel D (2014) Profiling of secondary metabolites in root exudates of Arabidopsis thaliana. Phytochemistry 108:35–46CrossRefPubMedGoogle Scholar
  21. 21.
    Wang X, Zhao P, Liu X, Chen J, Xu J, Chen H, Yan X (2014) Quantitative profiling method for phytohormones and betaines in algae by liquid chromatography electrospray ionization tandem mass spectrometry. Biomed Chromatogr 28:275–280CrossRefPubMedGoogle Scholar
  22. 22.
    Novak O, Henykova E, Sairanen I, Kowalczyk M, Pospisil T, Ljung K (2012) Tissue-specific profiling of the Arabidopsis thaliana auxin metabolome. Plant J 72:523–536CrossRefPubMedGoogle Scholar
  23. 23.
    Astot C, Dolezal K, Moritz T, Sandberg G (1998) Precolumn derivatization and capillary liquid chromatographic/frit-fast atom bombardment mass spectrometric analysis of cytokinins in Arabidopsis thaliana. J Mass Spectrom 33:892–902CrossRefPubMedGoogle Scholar
  24. 24.
    Jameson PE, Zhang H, Lewis DH (2000) Cytokinins. Extraction, separation, and analysis. Methods Mol Biol 141:101–121PubMedGoogle Scholar
  25. 25.
    Farrow S, Emery RN (2012) Concurrent profiling of indole-3-acetic acid, abscisic acid, and cytokinins and structurally related purines by high-performance-liquid-chromatography tandem electrospray mass spectrometry. Plant Methods 8:42CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Kojima M, Sakakibara H (2012) Highly sensitive high-throughput profiling of six phytohormones using MS-probe modification and liquid chromatography–tandem mass spectrometry. In: Normanly J (ed) High-throughput phenotyping in plants. Humana, New York, pp 151–164CrossRefGoogle Scholar
  27. 27.
    Takei K, Yamaya T, Sakakibara H (2003) A method for separation and determination of cytokinin nucleotides from plant tissues. J Plant Res 116:265–269CrossRefPubMedGoogle Scholar
  28. 28.
    Novák O, Hauserová E, Amakorová P, Doležal K, Strnad M (2008) Cytokinin profiling in plant tissues using ultra-performance liquid chromatography–electrospray tandem mass spectrometry. Phytochemistry 69:2214–2224CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Víctor Carrasco Loba
    • 1
  • Marta-Marina Pérez Alonso
    • 1
  • Stephan Pollmann
    • 1
    Email author
  1. 1.Centro de Biotecnología y Genómica de PlantasUniversidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA)Pozuelo de Alarcón, MadridSpain

Personalised recommendations