Advertisement

Methodological Advances in Auxin and Cytokinin Biology

  • Andrej Hurný
  • Eva BenkováEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1569)

Abstract

The history of auxin and cytokinin biology including the initial discoveries by father–son duo Charles Darwin and Francis Darwin (1880), and Gottlieb Haberlandt (1919) is a beautiful demonstration of unceasing continuity of research. Novel findings are integrated into existing hypotheses and models and deepen our understanding of biological principles. At the same time new questions are triggered and hand to hand with this new methodologies are developed to address these new challenges.

Key words

Auxin and cytokinins Auxin signaling and metabolism Auxin transport Cytokinin signaling 

Notes

Acknowledgments

We thank Melinda Abas and Jiri Friml for critical reading of the manuscript. As only a limited number of original articles are cited and discussed, we apologize to authors whose works are not cited because of space restrictions. This work was supported by the Austrian Science Fund (FWF01_I1774S) to E.B. and A.H.

References

  1. 1.
    Du Monceau D (1758) La physique des arbres, vol I. HL Guérin & LF Delatour, ParisGoogle Scholar
  2. 2.
    Sachs J (1880) Stoff und Form der Pflanzenorgane I. Arb Bot Inst Würzburg 2:452–488Google Scholar
  3. 3.
    Darwin C (1880) The power of movement in plants. John Murray, LondonCrossRefGoogle Scholar
  4. 4.
    Went F (1928) Wuchsstoff und Wachstum. Receuil Des Travaux Botaniques Neerlandais 25:1–116Google Scholar
  5. 5.
    Haberlandt G (1913) Zur physiologie der zellteilung. Sitzungsber Akad Wiss Berlin Phys Math C 1:318–345Google Scholar
  6. 6.
    Miller CO, Skoog F, von Saltza M, Strong FM (1955) Kinetin, a cell division factor from deoxyribonucleic acid. J Am Chem Soc 77:1392CrossRefGoogle Scholar
  7. 7.
    Letham DS (1963) Zeatin, a factor inducing cell division isolated from Zea mays. Life Sci 8:569–573CrossRefGoogle Scholar
  8. 8.
    Friml J, Vieten A, Sauer M, Weijers D, Schwarz H, Hamann T, Offringa R, Jurgens G (2003) Efflux-dependent auxin gradients establish the apical-basal axis of Arabidopsis. Nature 426:147–153PubMedCrossRefGoogle Scholar
  9. 9.
    Müller B, Sheen J (2008) Cytokinin and auxin interaction in root stem-cell specification during early embryogenesis. Nature 453:1094–1097PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Fukaki H, Tameda S, Masuda H, Tasaka M (2002) Lateral root formation is blocked by a gain-of-function mutation in the SOLITARY-ROOT/IAA14 gene of Arabidopsis. Plant J 29:153–168PubMedCrossRefGoogle Scholar
  11. 11.
    Benkova E, Michniewicz M, Sauer M, Teichmann T, Seifertova D, Jurgens G, Friml J (2003) Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115:591–602PubMedCrossRefGoogle Scholar
  12. 12.
    De Smet I, Tetsumura T, De Rybel B, Frey NF, Laplaze L, Casimiro I, Swarup R, Naudts M, Vanneste S, Audenaert D, Inze D, Bennett MJ, Beeckman T (2007) Auxin-dependent regulation of lateral root positioning in the basal meristem of Arabidopsis. Development 134:681–690PubMedCrossRefGoogle Scholar
  13. 13.
    Laplaze L, Benkova E, Casimiro I, Maes L, Vanneste S, Swarup R, Weijers D, Calvo V, Parizot B, Herrera-Rodriguez MB, Offringa R, Graham N, Doumas P, Friml J, Bogusz D, Beeckman T, Bennett M (2007) Cytokinins act directly on lateral root founder cells to inhibit root initiation. Plant Cell 19:3889–3900PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Bielach A, Podlešáková K, Marhavý P, Duclercq J, Cuesta C, Müller B, Grunewald W, Tarkowski P, Benková E (2012) Spatiotemporal regulation of lateral root organogenesis in Arabidopsis by cytokinin. Plant Cell 24:3967–3981PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Leyser O (2009) The control of shoot branching, an example of plant information processing. Plant Cell Environ 32:694–703PubMedCrossRefGoogle Scholar
  16. 16.
    Shimizu-Sato S, Tanaka M, Mori H (2009) Auxin-cytokinin interactions in the control of shoot branching. Plant Mol Biol 69:429–435PubMedCrossRefGoogle Scholar
  17. 17.
    Müller D, Waldie T, Miyawaki K, To JP, Melnyk CW, Kieber JJ, Kakimoto T, Leyser O (2015) Cytokinin is required for escape but not release from auxin mediated apical dominance. Plant J 82:874–886PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Friml J, Benkova E, Blilou I, Wisniewska J, Hamann T, Ljung K, Woody S, Sandberg G, Scheres B, Jurgens G, Palme K (2002) AtPIN4 mediates sink-driven auxin gradients and root patterning in Arabidopsis. Cell 108:661–673PubMedCrossRefGoogle Scholar
  19. 19.
    Blilou I, Xu J, Wildwater M, Willemsen V, Paponov I, Friml J, Heidstra R, Aida M, Palme K, Scheres B (2005) The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433:39–44PubMedCrossRefGoogle Scholar
  20. 20.
    Dello Ioio R, Nakamura K, Moubayidin L, Perilli S, Taniguchi M, Morita MT, Aoyama T, Costantino P, Sabatini S (2008) A genetic framework for the control of cell division and differentiation in the root meristem. Science 322:1380–1384PubMedCrossRefGoogle Scholar
  21. 21.
    Růžička K, Simaskova M, Duclercq J, Petrasek J, Zazimalova E, Simon S, Friml J, Van Montagu MC, Benkova E (2009) Cytokinin regulates root meristem activity via modulation of the polar auxin transport. Proc Natl Acad Sci U S A 106:4284–4289PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Reinhardt D, Pesce ER, Stieger P, Mandel T, Baltensperger K, Bennett M, Traas J, Friml J, Kuhlemeier C (2003) Regulation of phyllotaxis by polar auxin transport. Nature 426:255–260PubMedCrossRefGoogle Scholar
  23. 23.
    Zhao Z, Andersen SU, Ljung K, Dolezal K, Miotk A, Schultheiss SJ, Lohmann JU (2010) Hormonal control of the shoot stem-cell niche. Nature 465:1089–1092PubMedCrossRefGoogle Scholar
  24. 24.
    Yoshida S, Mandel T, Kuhlemeier C (2011) Stem cell activation by light guides plant organogenesis. Genes Dev 25:1439–1450PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Chickarmane VS, Gordon SP, Tarr PT, Heisler MG, Meyerowitz EM (2012) Cytokinin signaling as a positional cue for patterning the apical–basal axis of the growing Arabidopsis shoot meristem. Proc Natl Acad Sci U S A 109:4002–4007PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Mähönen AP, Bishopp A, Higuchi M, Nieminen KM, Kinoshita K, Tormakangas K, Ikeda Y, Oka A, Kakimoto T, Helariutta Y (2006) Cytokinin signaling and its inhibitor AHP6 regulate cell fate during vascular development. Science 311:94–98PubMedCrossRefGoogle Scholar
  27. 27.
    Hejátko J, Ryu H, Kim GT, Dobesová R, Choi S, Choi SM, Soucek P, Horák J, Pekárová B, Palme K, Brzobohaty B, Hwang I (2009) The histidine kinases CYTOKININ-INDEPENDENT1 and ARABIDOPSIS HISTIDINE KINASE2 and 3 regulate vascular tissue development in Arabidopsis shoots. Plant Cell 21:2008–2021PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Bishopp A, Lehesranta S, Vaten A, Help H, El-Showk S, Scheres B, Helariutta K, Mahonen AP, Sakakibara H, Helariutta Y (2011) Phloem-transported cytokinin regulates polar auxin transport and maintains vascular pattern in the root meristem. Curr Biol 21:927–932PubMedCrossRefGoogle Scholar
  29. 29.
    Rouse D, Mackay P, Stirnberg P, Estelle M, Leyser O (1998) Changes in auxin response from mutations in an AUX/IAA gene. Science 279:1371–1373PubMedCrossRefGoogle Scholar
  30. 30.
    Müller A, Guan C, Gälweiler L, Tanzler P, Huijser P, Marchant A, Parry G, Bennett M, Wisman E, Palme K (1998) AtPIN2 defines a locus of Arabidopsis for root gravitropism control. EMBO J 17:6903–6911PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Luschnig C, Gaxiola RA, Grisafi P, Fink GR (1998) EIR1, a root-specific protein involved in auxin transport, is required for gravitropism in Arabidopsis thaliana. Genes Dev 12:2175–2187PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Skoog F, Miller C (1957) Chemical regulation of growth and organ formation in plant tissue cultured in vitro. Symp Soc Exp Biol 11:118–131PubMedGoogle Scholar
  33. 33.
    Moubayidin L, Di Mambro R, Sabatini S (2009) Cytokinin-auxin crosstalk. Trends Plant Sci 14:557–562PubMedCrossRefGoogle Scholar
  34. 34.
    Depuydt S, Hardtke CS (2011) Hormone signalling crosstalk in plant growth regulation. Curr Biol 21:R365–R373PubMedCrossRefGoogle Scholar
  35. 35.
    Schaller GE, Bishopp A, Kieber JJ (2015) The yin-yang of hormones, cytokinin and auxin interactions in plant development. Plant Cell 27:44–63PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Boysen-Jensen P (1911) La transmission de l’irritation phototropique dans l’avena. Bulletin Academie Des Sciences et Lettres de Montpellier 3:1–24Google Scholar
  37. 37.
    Cholodny N (1927) Wuchshormone und Tropismen bei den Pflanzen. Biol Zentralbl 47:604–626Google Scholar
  38. 38.
    Cholodny N (1928) Beiträge zur hormonalen Theorie von Tropismen. Planta 6:118–134CrossRefGoogle Scholar
  39. 39.
    Kögl F, Erxleben H, Haagen-Smit AJ (1934) Über die Isolierung der Auxine a und b aus pfl anzlichen Materialien. 9. Mitteilung über pfl anzliche Wachstumsstoffe. Hoppe Seylers Z Physiol Chem 225:215–229CrossRefGoogle Scholar
  40. 40.
    Thimann KV, Koepfli JB (1935) Identity of the growth-promoting and root-forming substances of plants. Nature 135:101CrossRefGoogle Scholar
  41. 41.
    Haagen-Smit AJ, Dandliker WB, Wittwer SH, Murneek AE (1946) Isolation of 3-indoleacetic acid from immature corn kernels. Am J Bot 33:118–120CrossRefGoogle Scholar
  42. 42.
    Van Overbeek J, Conklin ME, Blakeslee AF (1941) Factors in coconut milk essential for growth and development of very young datura embryos. Science 94:350–351CrossRefGoogle Scholar
  43. 43.
    Jablonski JR, Skoog F (1954) Cell enlargement and cell division in excised tobacco pith tissue. Physiol Plant 7:16–24CrossRefGoogle Scholar
  44. 44.
    Hall RH, De Ropp RS (1955) Formation of 6-furfurylaminopurine from DNA breakdown products. J Am Chem Soc 77:6400CrossRefGoogle Scholar
  45. 45.
    Miller CO (1961) Kinetin-like compound in maize. Proc Natl Acad Sci U S A 47:170–174PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Salisbury FB, Ross CW (1992) Plant physiology, 4th edn. Wadsworth, Inc., Belmont, CAGoogle Scholar
  47. 47.
    Stepanova AN, Robertson-Hoyt J, Yun J, Benavente LM, Xie DY, Dolezal K, Schlereth A, Jurgens G, Alonso JM (2008) TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development. Cell 133:177–191PubMedCrossRefGoogle Scholar
  48. 48.
    Tao Y, Ferrer JL, Ljung K, Pojer F, Hong F, Long JA, Li L, Moreno JE, Bowman ME, Ivans LJ, Cheng Y, Lim J, Zhao Y, Ballaré CL, Sandberg G, Noel JP, Chory J (2008) Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants. Cell 133:164–176PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Yamada M, Greenham K, Prigge MJ, Jensen PJ, Estelle M (2009) The TRANSPORT INHIBITOR RESPONSE2 gene is required for auxin synthesis and diverse aspects of plant development. Plant Physiol 151:168–179PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Cheng Y, Dai X, Zhao Y (2006) Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis. Genes Dev 20:1790–1799PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Cheng Y, Dai X, Zhao Y (2007) Auxin synthesized by the YUCCA flavin monooxygenases is essential for embryogenesis and leaf formation in Arabidopsis. Plant Cell 19:2430–2439PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Won C, Shen X, Mashiguchi K, Zheng Z, Dai X, Cheng Y, Kasahara H, Kamiya Y, Chory J, Zhao Y (2011) Conversion of tryptophan to indole-3-acetic acid by TRYPTOPHAN AMINOTRANSFERASES OF ARABIDOPSIS and YUCCAs in Arabidopsis. Proc Natl Acad Sci U S A 108:18518–18523PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Mashiguchi K, Tanaka K, Sakai T, Sugawara S, Kawaide H, Natsume M, Hanada A, Yaeno T, Shirasu K, Yao H, McSteen P, Zhao Y, Hayashi K, Kamiya Y, Kasahara H (2011) The main auxin biosynthesis pathway in Arabidopsis. Proc Natl Acad Sci U S A 108:18512–18517PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Bartel B (1997) Auxin biosynthesis. Annu Rev Plant Physiol Plant Mol Biol 48:51–66PubMedCrossRefGoogle Scholar
  55. 55.
    Ljung K, Bhalerao RP, Sandberg G (2001) Sites and homeostatic control of auxin biosynthesis in Arabidopsis during vegetative growth. Plant J 28:465–474PubMedCrossRefGoogle Scholar
  56. 56.
    Stone SL, Braybrook SA, Paula SL, Kwong LW, Meuser J, Pelletier J, Hsieh TF, Fischer RL, Goldberg RB, Harada J (2008) Arabidopsis LEAFY COTYLEDON2 induces maturation traits and auxin activity, implications for somatic embryogenesis. Proc Natl Acad Sci U S A 105:3151–3156PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Eklund DM, Ståldal V, Valsecchi I, Cierlik I, Eriksson C, Hiratsu K, Ohme-Takagi M, Sundström JF, Thelander M, Ezcurra I, Sundberg E (2010) The Arabidopsis thaliana STYLISH1 protein acts as a transcriptional activator regulating auxin biosynthesis. Plant Cell 22:349–363PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Franklin KA, Lee SH, Patel D, Kumar SV, Spartz AK, Gu C, Ye S, Yu P, Breen G, Cohen JD, Wigge PA, Gray WM (2011) Phytochrome-interacting factor 4 (PIF4) regulates auxin biosynthesis at high temperature. Proc Natl Acad Sci U S A 108:20231–20235PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Sun J, Qi L, Li Y, Chu J, Li C (2012) PIF4-mediated activation of YUCCA8 expression integrates temperature into the auxin pathway in regulating Arabidopsis hypocotyl growth. PLoS Genet 8:e1002594PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Cui D, Zhao J, Jing Y, Fan M, Liu J, Wang Z, Xin W, Hu Y (2013) The Arabidopsis IDD14, IDD15, and IDD16 cooperatively regulate lateral organ morphogenesis and gravitropism by promoting auxin biosynthesis and transport. PLoS Genet 9:e1003759PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Pinon V, Prasad K, Grigg SP, Sanchez-Perez GF, Scheres B (2013) Local auxin biosynthesis regulation by PLETHORA transcription factors controls phyllotaxis in Arabidopsis. Proc Natl Acad Sci U S A 110:1107–1112PubMedCrossRefGoogle Scholar
  62. 62.
    Li LC, Qin GJ, Tsuge T, Hou XH, Ding MY, Aoyama T, Oka A, Chen Z, Gu H, Zhao Y, Qu LJ (2008) SPOROCYTELESS modulates YUCCA expression to regulate the development of lateral organs in Arabidopsis. New Phytol 179:751–764PubMedCrossRefGoogle Scholar
  63. 63.
    Soeno K, Goda H, Ishii T, Ogura T, Tachikawa T, Sasaki E, Yoshida S, Fujioka S, Asami T, Shimada Y (2010) Auxin biosynthesis inhibitors, identified by a genomics-based approach, provide insights into auxin biosynthesis. Plant Cell Physiol 51:524–536PubMedCrossRefGoogle Scholar
  64. 64.
    He W, Brumos J, Li H, Ji Y, Ke M, Gong X, Zeng Q, Li W, Zhang X, An F, Wen X, Li P, Chu J, Sun X, Yan C, Yan N, Xie DY, Raikhel N, Yang Z, Stepanova AN, Alonso JM, Guo H (2011) A small-molecule screen identifies L-kynurenine as a competitive inhibitor of TAA1/TAR activity in ethylene-directed auxin biosynthesis and root growth in Arabidopsis. Plant Cell 23:3944–3960PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Nishimura T, Hayashi K, Suzuki H, Gyohda A, Takaoka C, Sakaguchi Y, Matsumoto S, Kasahara H, Sakai T, Kato J, Kamiya Y, Koshiba T (2014) Yucasin is a potent inhibitor of YUCCA, a key enzyme in auxin biosynthesis. Plant J 77:352–366PubMedCrossRefGoogle Scholar
  66. 66.
    Taya Y, Tanaka Y, Nishimura S (1978) 5′-AMP is a direct precursor of cytokinin in Dictyostelium discoideum. Nature 271:545–547PubMedCrossRefGoogle Scholar
  67. 67.
    Akiyoshi DE, Klee H, Amasino RM, Nester EW, Gordon MP (1984) T-DNA of Agrobacterium tumefaciens encodes an enzyme of cytokinin biosynthesis. Proc Natl Acad Sci U S A 81:5994–5998PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Takei K, Sakakibara H, Sugiyama T (2001) Identification of genes encoding adenylate isopentenyltransferase, a cytokinin biosynthesis enzyme, in Arabidopsis thaliana. J Biol Chem 276:26405–26410PubMedCrossRefGoogle Scholar
  69. 69.
    Miyawaki K, Matsumoto-Kitano M, Kakimoto T (2004) Expression of cytokinin biosynthetic isopentenyltransferase genes in Arabidopsis, tissue specificity and regulation by auxin, cytokinin, and nitrate. Plant J 37:128–138PubMedCrossRefGoogle Scholar
  70. 70.
    Takei K, Ueda N, Aoki K, Kuromori T, Hirayama T, Shinozaki K, Yamaya T, Sakakibara H (2004) AtIPT3, an Arabidopsis isopentenyltransferase gene, is a key determinant of macronutrient-responsive cytokinin biosynthesis. Plant Cell Physiol 45:1053–1062PubMedCrossRefGoogle Scholar
  71. 71.
    Takei K, Yamaya T, Sakakibara H (2004) Arabidopsis CYP735A1 and CYP735A2 encode cytokinin hydroxylases that catalyze the biosynthesis of trans-zeatin. J Biol Chem 279:41866–41872PubMedCrossRefGoogle Scholar
  72. 72.
    Kurakawa T, Ueda N, Maekawa M, Kobayashi K, Kojima M, Nagato Y, Sakakibara H, Kyozuka J (2007) Direct control of shoot meristem activity by a cytokinin-activating enzyme. Nature 445:652–655PubMedCrossRefGoogle Scholar
  73. 73.
    Kuroha T, Tokunaga H, Kojima M, Ueda N, Ishida T, Nagawa S, Fukuda H, Sugimoto K, Sakakibara H (2009) Functional analyses of LONELY GUY cytokinin-activating enzymes reveal the importance of the direct activation pathway in Arabidopsis. Plant Cell 21:3152–3169PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Chen CM, Kristopeit SM (1981) Metabolism of cytokinin, dephosphorylation of cytokinin ribonucleotide by 5′-nucleotidases from wheat germ cytosol. Plant Physiol 67:494–498PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Chen CM, Kristopeit SM (1981) Metabolism of cytokinin, deribosylation of cytokinin ribonucleoside by adenine nucleosidase from wheat germ cells. Plant Physiol 68:1020–1023PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Hou B, Lim EK, Higgins G, Bowles DJ (2004) N-Glucosylation of cytokinins by glycosyltransferases of Arabidopsis thaliana. J Biol Chem 279:47822–47832PubMedCrossRefGoogle Scholar
  77. 77.
    Werner T, Motyka V, Strnad M, Schmulling T (2001) Regulation of plant growth by cytokinin. Proc Natl Acad Sci U S A 98:10487–10492PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Werner T, Motyka V, Laucou V, Smets R, Van Onckelen H, Schmulling T (2003) Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell 15:2532–2550PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Letham DS, Palni LMS (1983) The biosynthesis and metabolism of cytokinins. Annu Rev Plant Physiol 34:163–197CrossRefGoogle Scholar
  80. 80.
    Mok DW, Mok MC (2001) Cytokinin metabolism and action. Annu Rev Plant Physiol Plant Mol Biol 52:89–118PubMedCrossRefGoogle Scholar
  81. 81.
    Tarkowski P, Ge L, Wan Hong Yong J, Tan SN (2009) Analytical methods for cytokinins. Trends Anal Chem 28(3):323–335CrossRefGoogle Scholar
  82. 82.
    Morris DA, Thomas AG (1978) A microautoradiographic study of auxin transport in the stem of intact pea seedlings (Pisum sativum L.). J Exp Bot 29:147–157CrossRefGoogle Scholar
  83. 83.
    Nowacki J, Bandurski RS (1980) Myo-inositol esters of indole-3-acetic acid as seed auxin precursors of Zea mays L. Plant Physiol 65:422–427PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Lomax TL, Muday GK, Rubery PH (1995) Auxin transport. In: Davies PJ (ed) Plant hormones, physiology, biochemistry and molecular biology. Kluwer, Dordrecht, Netherlands, pp 509–530Google Scholar
  85. 85.
    Rashotte AM, Brady S, Reed R, Ante S, Muday GK (2000) Basipetal auxin transport is required for gravitropism in roots of Arabidopsis. Plant Physiol 122:481–490PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Rubery PH, Sheldrake AR (1974) Carrier-mediated auxin transport. Planta 118:101–121PubMedCrossRefGoogle Scholar
  87. 87.
    Raven JA (1975) Transport of indoleacetic acid in plant cells in relation to pH and electrical potential gradients, and its significance for polar IAA transport. New Phytol 74:163–172CrossRefGoogle Scholar
  88. 88.
    Bennett MJ, Marchant A, Green HG, May ST, Ward SP, Millner PA, Walker AR, Schulz B, Feldmann KA (1996) Arabidopsis AUX1 gene, a permease-like regulator of root gravitropism. Science 273:948–950PubMedCrossRefGoogle Scholar
  89. 89.
    Gälweiler L, Guan C, Muller A, Wisman E, Mendgen K, Yephremov A, Palme K (1998) Regulation of polar auxin transport by AtPIN1 in Arabidopsis vascular tissue. Science 282:2226–2230PubMedCrossRefGoogle Scholar
  90. 90.
    Geisler M, Blakeslee JJ, Bouchard R, Lee OR, Vincenzetti V, Bandyopadhyay A, Titapiwatanakun B, Peer WA, Bailly A, Richards EL, Ejendal KF, Smith AP, Baroux C, Grossniklaus U, Muller A, Hrycyna CA, Dudler R, Murphy AS, Martinoia E (2005) Cellular efflux of auxin catalyzed by the Arabidopsis MDR/PGP transporter AtPGP1. Plant J 44:179–194PubMedCrossRefGoogle Scholar
  91. 91.
    Cho M, Lee SH, Cho HT (2007) P-glycoprotein4 displays auxin efflux transporter-like action in Arabidopsis root hair cells and tobacco cells. Plant Cell 19:3930–3943PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Pickett FB, Wilson AK, Estelle M (1990) The aux1 mutation of Arabidopsis confers both auxin and ethylene resistance. Plant Physiol 94:1462–1466PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Yang Y, Hammes UZ, Taylor CG, Schachtman DP, Nielsen E (2006) High-affinity auxin transport by the AUX1 influx carrier protein. Curr Biol 16:1123–1127PubMedCrossRefGoogle Scholar
  94. 94.
    Parry G, Delbarre A, Marchant A, Swarup R, Napier R, Perrot-Rechenmann C, Bennett MJ (2001) Novel auxin transport inhibitors phenocopy the auxin influx carrier mutation aux1. Plant J 25:399–406PubMedCrossRefGoogle Scholar
  95. 95.
    Swarup K, Benkova E, Swarup R, Casimiro I, Peret B, Yang Y, Parry G, Nielsen E, De Smet I, Vanneste S, Levesque MP, Carrier D, James N, Calvo V, Ljung K, Kramer E, Roberts R, Graham N, Marillonnet S, Patel K, Jones JD, Taylor CG, Schachtman DP, May S, Sandberg G, Benfey P, Friml J, Kerr I, Beeckman T, Laplaze L, Bennett MJ (2008) The auxin influx carrier LAX3 promotes lateral root emergence. Nat Cell Biol 10:946–954PubMedCrossRefGoogle Scholar
  96. 96.
    Péret B, Swarup K, Ferguson A, Seth M, Yang Y, Dhondt S, James N, Casimiro I, Perry P, Syed A, Yang H, Reemmer J, Venison E, Howells C, Perez-Amador MA, Yun J, Alonso J, Beemster GT, Laplaze L, Murphy A, Bennett MJ, Nielsen E, Swarup R (2012) AUX/LAX genes encode a family of auxin influx transporters that perform distinct functions during Arabidopsis development. Plant Cell 24:2874–2885PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Bainbridge K, Guyomarc’h S, Bayer E, Swarup R, Bennett M, Mandel T, Kuhlemeier C (2008) Auxin influx carriers stabilize phyllotactic patterning. Genes Dev 22:810–823PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Stone BB, Stowe-Evans EL, Harper RM, Celaya RB, Ljung K, Sandberg G, Liscum E (2008) Disruptions in AUX1-dependent auxin influx alter hypocotyl phototropism in Arabidopsis. Mol Plant 1:129–144PubMedCrossRefGoogle Scholar
  99. 99.
    Jones AR, Kramer EM, Knox K, Swarup R, Bennett MJ, Lazarus CM, Leyser HM, Grierson CS (2009) Auxin transport through non-hair cells sustains root-hair development. Nat Cell Biol 11:78–84PubMedCrossRefGoogle Scholar
  100. 100.
    Okada K, Ueda J, Komaki MK, Bell CJ, Shimura Y (1991) Requirement of the auxin polar transport system in early stages of Arabidopsis floral bud formation. Plant Cell 3:677–684PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Petrášek J, Mravec J, Bouchard R, Blakeslee JJ, Abas M, Seifertova D, Wisniewska J, Tadele Z, Kubes M, Covanova M, Dhonukshe P, Skupa P, Benkova E, Perry L, Krecek P, Lee OR, Fink GR, Geisler M, Murphy AS, Luschnig C, Zazimalova E, Friml J (2006) PIN proteins perform a rate-limiting function in cellular auxin efflux. Science 312:914–918PubMedCrossRefGoogle Scholar
  102. 102.
    Yang H, Murphy AS (2009) Functional expression and characterization of Arabidopsis ABCB, AUX 1 and PIN auxin transporters in Schizosaccharomyces pombe. Plant J 59:179–191PubMedCrossRefGoogle Scholar
  103. 103.
    Barbez E, Lanková M, Parezová M, Maizel A, Zazímalová E, Petrášek J, Friml J, Kleine-Vehn J (2013) Single-cell-based system to monitor carrier driven cellular auxin homeostasis. BMC Plant Biol 13:20PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Zourelidou M, Absmanner B, Weller B, Barbosa IC, Willige BC, Fastner A, Streit V, Port SA, Colcombet J, de la Fuente van Bentem S, Hirt H, Kuster B, Schulze WX, Hammes UZ, Schwechheimer C (2014) Auxin efflux by PIN-FORMED proteins is activated by two different protein kinases, D6 PROTEIN KINASE and PINOID. Elife 3Google Scholar
  105. 105.
    Zažímalová E, Krecek P, Skupa P, Hoyerova K, Petrasek J (2007) Polar transport of the plant hormone auxin—the role of PIN-FORMED (PIN) proteins. Cell Mol Life Sci 64:1621–1637PubMedCrossRefGoogle Scholar
  106. 106.
    Adamowski M, Friml J (2015) PIN-dependent auxin transport, action, regulation, and evolution. Plant Cell 27:20–32PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Mravec J, Skůpa P, Bailly A, Hoyerová K, Krecek P, Bielach A, Petrásek J, Zhang J, Gaykova V, Stierhof YD, Dobrev PI, Schwarzerová K, Rolcík J, Seifertová D, Luschnig C, Benková E, Zazímalová E, Geisler M, Friml J (2009) Subcellular homeostasis of phytohormone auxin is mediated by the ER-localized PIN5 transporter. Nature 459:1136–1140PubMedCrossRefGoogle Scholar
  108. 108.
    Ding Z, Wang B, Moreno I, Dupláková N, Simon S, Carraro N, Reemmer J, Pěnčík A, Chen X, Tejos R, Skůpa P, Pollmann S, Mravec J, Petrášek J, Zažímalová E, Honys D, Rolčík J, Murphy A, Orellana A, Geisler M, Friml J (2012) ER-localized auxin transporter PIN8 regulates auxin homeostasis and male gametophyte development in Arabidopsis. Nat Commun 3:941PubMedCrossRefGoogle Scholar
  109. 109.
    Barbez E, Kubeš M, Rolčík J, Béziat C, Pěnčík A, Wang B, Rosquete MR, Zhu J, Dobrev PI, Lee Y, Zažímalovà E, Petrášek J, Geisler M, Friml J, Kleine-Vehn J (2012) A novel putative auxin carrier family regulates intracellular auxin homeostasis in plants. Nature 485:119–122PubMedCrossRefGoogle Scholar
  110. 110.
    Noh B, Murphy AS, Spalding EP (2001) Multidrug resistance-like genes of Arabidopsis required for auxin transport and auxin-mediated development. Plant Cell 13:2441–2454PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Verrier PJ, Bird D, Burla B, Dassa E, Forestier C, Geisler M, Klein M, Kolukisaoglu U, Lee Y, Martinoia E, Murphy A, Rea PA, Samuels L, Schulz B, Spalding EJ, Yazaki K, Theodoulou FL (2008) Plant ABC proteins—a unified nomenclature and updated inventory. Trends Plant Sci 13:151–159PubMedCrossRefGoogle Scholar
  112. 112.
    Peer WA, Blakeslee JJ, Yang H, Murphy AS (2011) Seven things we think we know about auxin transport. Mol Plant 4:487–504PubMedCrossRefGoogle Scholar
  113. 113.
    Wisniewska J, Xu J, Seifertova D, Brewer PB, Ruzicka K, Blilou I, Rouquie D, Benkova E, Scheres B, Friml J (2006) Polar PIN localization directs auxin flow in plants. Science 312:883PubMedCrossRefGoogle Scholar
  114. 114.
    Benjamins R, Quint A, Weijers D, Hooykaas P, Offringa R (2001) The PINOID protein kinase regulates organ development in Arabidopsis by enhancing polar auxin transport. Development 128:4057–4067PubMedGoogle Scholar
  115. 115.
    Friml J, Yang X, Michniewicz M, Weijers D, Quint A, Tietz O, Benjamins R, Ouwerkerk PB, Ljung K, Sandberg G, Hooykaas PJ, Palme K, Offringa R (2004) A PINOID-dependent binary switch in apical-basal PIN polar targeting directs auxin efflux. Science 306:862–865PubMedCrossRefGoogle Scholar
  116. 116.
    Michniewicz M, Zago MK, Abas L, Weijers D, Schweighofer A, Meskiene I, Heisler MG, Ohno C, Zhang J, Huang F, Schwab R, Weigel D, Meyerowitz EM, Luschnig C, Offringa R, Friml J (2007) Antagonistic regulation of PIN phosphorylation by PP2A and PINOID directs auxin flux. Cell 130:1044–1056PubMedCrossRefGoogle Scholar
  117. 117.
    Zhang J, Nodzynski T, Pencik A, Rolcik J, Friml J (2010) PIN phosphorylation is sufficient to mediate PIN polarity and direct auxin transport. Proc Natl Acad Sci U S A 107:918–922PubMedCrossRefGoogle Scholar
  118. 118.
    Huang F, Zago MK, Abas L, van Marion A, Galvan-Ampudia CS, Offringa R (2010) Phosphorylation of conserved PIN motifs directs Arabidopsis PIN1 polarity and auxin transport. Plant Cell 22:1129–1142PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Zhang J, Vanneste S, Brewer PB, Michniewicz M, Grones P, Kleine-Vehn J, Löfke C, Teichmann T, Bielach A, Cannoot B, Hoyerová K, Chen X, Xue HW, Benková E, Zažímalová E, Friml J (2011) Inositol trisphosphate-induced Ca2+ signaling modulates auxin transport and PIN polarity. Dev Cell 20:855–866PubMedCrossRefGoogle Scholar
  120. 120.
    Feraru E, Feraru MI, Kleine-Vehn J, Martinière A, Mouille G, Vanneste S, Vernhettes S, Runions J, Friml J (2011) PIN polarity maintenance by the cell wall in Arabidopsis. Curr Biol 21:338–343PubMedCrossRefGoogle Scholar
  121. 121.
    Heisler MG, Hamant O, Krupinski P, Uyttewaal M, Ohno C, Jönsson H, Traas J, Meyerowitz EM (2010) Alignment between PIN1 polarity and microtubule orientation in the shoot apical meristem reveals a tight coupling between morphogenesis and auxin transport. PLoS Biol 8:e1000516PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Geldner N, Friml J, Stierhof YD, Jurgens G, Palme K (2001) Auxin transport inhibitors block PIN1 cycling and vesicle trafficking. Nature 413:425–428PubMedCrossRefGoogle Scholar
  123. 123.
    Dhonukshe P, Aniento F, Hwang I, Robinson DG, Mravec J, Stierhof YD, Friml J (2007) Clathrin-mediated constitutive endocytosis of PIN auxin efflux carriers in Arabidopsis. Curr Biol 17:520–527PubMedCrossRefGoogle Scholar
  124. 124.
    Kitakura S, Vanneste S, Robert S, Löfke C, Teichmann T, Tanaka H, Friml J (2011) Clathrin mediates endocytosis and polar distribution of PIN auxin transporters in Arabidopsis. Plant Cell 23:1920–1931PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Wang C, Yan X, Chen Q, Jiang N, Fu W, Ma B, Liu J, Li C, Bednarek SY, Pan J (2013) Clathrin light chains regulate clathrin-mediated trafficking, auxin signaling, and development in Arabidopsis. Plant Cell 25:499–516PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Geldner N, Anders N, Wolters H, Keicher J, Kornberger W, Muller P, Delbarre A, Ueda T, Nakano A, Jurgens G (2003) The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport, and auxin-dependent plant growth. Cell 112:219–230PubMedCrossRefGoogle Scholar
  127. 127.
    Kleine-Vehn J, Dhonukshe P, Sauer M, Brewer PB, Wisniewska J, Paciorek T, Benkova E, Friml J (2008) ARF GEF-dependent transcytosis and polar delivery of PIN auxin carriers in Arabidopsis. Curr Biol 18:526–531PubMedCrossRefGoogle Scholar
  128. 128.
    Kleine-Vehn J, Friml J (2008) Polar targeting and endocytic recycling in auxin-dependent plant development. Annu Rev Cell Dev Biol 24:447–473PubMedCrossRefGoogle Scholar
  129. 129.
    Naramoto S, Otegui MS, Kutsuna N, de Rycke R, Dainobu T, Karampelias M, Fujimoto M, Feraru E, Miki D, Fukuda H, Nakano A, Friml J (2014) Insights into the localization and function of the membrane trafficking regulator GNOM ARF-GEF at the Golgi apparatus in Arabidopsis. Plant Cell 26:3062–3076PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Naramoto S, Kleine-Vehn J, Robert S, Fujimoto M, Dainobu T, Paciorek T, Ueda T, Nakano A, Van Montagu MCE, Fukuda H, Friml J (2010) ADP-ribosylation factor machinery mediates endocytosis in plant cells. Proc Natl Acad Sci U S A 107:21890–21895PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Teh OK, Moore I (2007) An ARF-GEF acting at the Golgi and in selective endocytosis in polarized plant cells. Nature 448:493–496PubMedCrossRefGoogle Scholar
  132. 132.
    Feraru E, Paciorek T, Feraru MI, Zwiewka M, De Groodt R, De Rycke R, Kleine-Vehn J, Friml J (2010) The AP-3 b adaptin mediates the biogenesis and function of lytic vacuoles in Arabidopsis. Plant Cell 22:2812–2824PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Tanaka H, Kitakura S, De Rycke R, De Groodt R, Friml J (2009) Fluorescence imaging-based screen identifies ARF GEF component of early endosomal trafficking. Curr Biol 19:391–397PubMedCrossRefGoogle Scholar
  134. 134.
    Tanaka H, Kitakura S, Rakusová H, Uemura T, Feraru MI, De Rycke R, Robert S, Kakimoto T, Friml J (2013) Cell polarity and patterning by PIN trafficking through early endosomal compartments in Arabidopsis thaliana. PLoS Genet 9:e1003540PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Robert HS, Grones P, Stepanova AN, Robles LM, Lokerse AS, Alonso JM, Weijers D, Friml J (2013) Local auxin sources orient the apical-basal axis in Arabidopsis embryos. Curr Biol 23:2506–2512PubMedCrossRefGoogle Scholar
  136. 136.
    Dubrovsky JG, Sauer M, Napsucialy-Mendivil S, Ivanchenko MG, Friml J, Shishkova S, Celenza J, Benková E (2008) Auxin acts as a local morphogenetic trigger to specify lateral root founder cells. Proc Natl Acad Sci U S A 105:8790–8794PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Kleine-Vehn J, Ding Z, Jones AR, Tasaka M, Morita MT, Friml J (2010) Gravity-induced PIN transcytosis for polarization of auxin fluxes in gravity-sensing root cells. Proc Natl Acad Sci U S A 107:22344–22349PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Ding Z, Galván-Ampudia CS, Demarsy E, Łangowski Ł, Kleine-Vehn J, Fan Y, Morita MT, Tasaka M, Fankhauser C, Offringa R, Friml J (2011) Light-mediated polarization of the PIN3 auxin transporter for the phototropic response in Arabidopsis. Nat Cell Biol 13:447–452PubMedCrossRefGoogle Scholar
  139. 139.
    Rakusová H, Gallego-Bartolomé J, Vanstraelen M, Robert HS, Alabadí D, Blázquez MA, Benková E, Friml J (2011) Polarization of PIN3-dependent auxin transport for hypocotyl gravitropic response in Arabidopsis thaliana. Plant J 67:817–826PubMedCrossRefGoogle Scholar
  140. 140.
    Gillissen B, Burkle L, Andre B, Kuhn C, Rentsch D, Brandl B, Frommer WB (2000) A new family of high-affinity transporters for adenine, cytosine, and purine derivatives in Arabidopsis. Plant Cell 12:291–300PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Burkle L, Cedzich A, Dopke C, Stransky H, Okumoto S, Gillissen B, Kuhn C, Frommer WB (2003) Transport of cytokinins mediated by purine transporters of the PUP family expressed in phloem, hydathodes, and pollen of Arabidopsis. Plant J 34:13–26PubMedCrossRefGoogle Scholar
  142. 142.
    Bishopp A, Benkova E, Helariutta Y (2011) Sending mixed messages, auxin-cytokinin crosstalk in roots. Curr Opin Plant Biol 14:10–16PubMedCrossRefGoogle Scholar
  143. 143.
    Beveridge CA, Murfet IC, Kerhoas L, Sotta B, Miginiac E, Rameau C (1997) The shoot controls zeatin riboside export from pea roots. Evidence from the branching mutant rms4. Plant J 11:339–345CrossRefGoogle Scholar
  144. 144.
    Hirose N, Makita N, Yamaya T, Sakakibara H (2005) Functional characterization and expression analysis of a gene, OsENT2, encoding an equilibrative nucleoside transporter in rice suggest a function in cytokinin transport. Plant Physiol 138:196–206PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Corbesier L, Prinsen E, Jacqmard A, Lejeune P, Van Onckelen H, Périlleux C, Bernier G (2003) Cytokinin levels in leaves, leaf exudate and shoot apical meristem of Arabidopsis thaliana during floral transition. J Exp Bot 54:2511–2517PubMedCrossRefGoogle Scholar
  146. 146.
    Matsumoto-Kitano M, Kusumoto T, Tarkowski P, Kinoshita-Tsujimura K, Václavíková K, Miyawaki K, Kakimoto T (2008) Cytokinins are central regulators of cambial activity. Proc Natl Acad Sci U S A 105:20027–20031PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Kudo T, Kiba T, Sakakibara H (2010) Metabolism and long-distance translocation of cytokinins. J Integr Plant Biol 52:53–60PubMedCrossRefGoogle Scholar
  148. 148.
    Zhang K, Novak O, Wei Z, Gou M, Zhang X, Yu Y, Yang H, Cai Y, Strnad M, Liu CJ (2014) Arabidopsis ABCG14 protein controls the acropetal translocation of root-synthesized cytokinins. Nat Commun 5:3274PubMedGoogle Scholar
  149. 149.
    Cedzich A, Stransky H, Schulz B, Frommer WB (2008) Characterization of cytokinin and adenine transport in Arabidopsis cell cultures. Plant Physiol 148:1857–1867PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Li G, Liu K, Baldwin SA, Wang D (2003) Equilibrative nucleoside transporters of Arabidopsis thaliana. cDNA cloning, expression pattern, and analysis of transport activities. J Biol Chem 278:35732–35742PubMedCrossRefGoogle Scholar
  151. 151.
    Sun J, Hirose N, Wang X, Wen P, Xue L, Sakakibara H, Zuo J (2005) Arabidopsis SOI33/AtENT8 gene encodes a putative equilibrative nucleoside transporter that is involved in cytokinin transport in planta. J Integr Plant Biol 47:588–603CrossRefGoogle Scholar
  152. 152.
    Hirose N, Takei K, Kuroha T, Kamada-Nobusada T, Hayashi H, Sakakibara H (2008) Regulation of cytokinin biosynthesis, compartmentalization and translocation. J Exp Bot 59:75–83PubMedCrossRefGoogle Scholar
  153. 153.
    Ruegger M, Dewey E, Gray WM, Hobbie L, Turner J, Estelle M (1998) The TIR1 protein of Arabidopsis functions in auxin response and is related to human SKP2 and yeast grr1p. Genes Dev 12:198–207PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Ruegger M, Dewey E, Hobbie L, Brown D, Bernasconi P, Turner J, Muday G, Estelle M (1997) Reduced naphthylphthalamic acid binding in the tir3 mutant of Arabidopsis is associated with a reduction in polar auxin transport and diverse morphological defects. Plant Cell 9:745–757PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Abel S, Nguyen MD, Theologis A (1995) The PS-IAA4/5-like family of early auxin-inducible mRNAs in Arabidopsis thaliana. J Mol Biol 251:533–549PubMedCrossRefGoogle Scholar
  156. 156.
    Hagen G, Guilfoyle T (2002) Auxin-responsive gene expression, genes, promoters and regulatory factors. Plant Mol Biol 49:373–385PubMedCrossRefGoogle Scholar
  157. 157.
    Abel S, Theologis A (1996) Early genes and auxin action. Plant Physiol 111:9–17PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Ulmasov T, Hagen G, Guilfoyle TJ (1997) ARF1, a transcription factor that binds auxin response elements. Science 276:1865–1868PubMedCrossRefGoogle Scholar
  159. 159.
    Gray WM, del Pozo JC, Walker L, Hobbie L, Risseeuw E, Banks T, Crosby WL, Yang M, Ma H, Estelle M (1999) Identification of an SCF ubiquitin-ligase complex required for auxin response in Arabidopsis thaliana. Genes Dev 13:1678–1691PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Abel S, Theologis A (2010) Odyssey of auxin. Cold Spring Harb Perspect Biol 2:a004572PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Gray WM, Kepinski S, Rouse D, Leyser O, Estelle M (2001) Auxin regulates SCF(TIR1)-dependent degradation of AUX/IAA proteins. Nature 414:271–276PubMedCrossRefGoogle Scholar
  162. 162.
    Dharmasiri N, Dharmasiri S, Estelle M (2005) The F-box protein TIR1 is an auxin receptor. Nature 435:441–445PubMedCrossRefGoogle Scholar
  163. 163.
    Dharmasiri N, Dharmasiri S, Weijers D, Lechner E, Yamada M, Hobbie L, Ehrismann JS, Jurgens G, Estelle M (2005) Plant development is regulated by a family of auxin receptor F box proteins. Dev Cell 9:109–119PubMedCrossRefGoogle Scholar
  164. 164.
    Kepinski S, Leyser O (2005) The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435:446–451PubMedCrossRefGoogle Scholar
  165. 165.
    Tan X, Calderon-Villalobos LI, Sharon M, Zheng C, Robinson CV, Estelle M, Zheng N (2007) Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 446:640–645PubMedCrossRefGoogle Scholar
  166. 166.
    Szemenyei H, Hannon M, Long JA (2008) TOPLESS mediates auxin-dependent transcriptional repression during Arabidopsis embryogenesis. Science 319:1384–1386PubMedCrossRefGoogle Scholar
  167. 167.
    Overvoorde PJ, Okushima Y, Alonso JM, Chan A, Chang C, Ecker JR, Hughes B, Liu A, Onodera C, Quach H, Smith A, Yu G, Theologis A (2005) Functional genomic analysis of the AUXIN/INDOLE-3-ACETIC ACID gene family members in Arabidopsis thaliana. Plant Cell 17:3282–3300PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Okushima Y, Overvoorde PJ, Arima K, Alonso JM, Chan A, Chang C, Ecker JR, Hughes B, Lui A, Nguyen D, Onodera C, Quach H, Smith A, Yu G, Theologis A (2005) Functional genomic analysis of the AUXIN RESPONSE FACTOR gene family members in Arabidopsis thaliana, unique and overlapping functions of ARF7 and ARF19. Plant Cell 17:444–463PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Calderón Villalobos LI, Lee S, De Oliveira C, Ivetac A, Brandt W, Armitage L, Sheard LB, Tan X, Parry G, Mao H, Zheng N, Napier R, Kepinski S, Estelle M (2012) A combinatorial TIR1/AFB-Aux/IAA co-receptor system for differential sensing of auxin. Nat Chem Biol 8:477–485PubMedCrossRefGoogle Scholar
  170. 170.
    Moss BL, Mao H, Guseman JM, Hinds TR, Hellmuth A, Kovenock M, Noorassa A, Lanctot A, Villalobos LI, Zheng N, Nemhauser JL (2015) Rate motifs tune auxin/indole-3-acetic acid degradation dynamics. Plant Physiol 169:803–813PubMedPubMedCentralCrossRefGoogle Scholar
  171. 171.
    Vernoux T, Brunoud G, Farcot E, Morin V, Van den Daele H, Legrand J, Oliva M, Das P, Larrieu A, Wells D, Guédon Y, Armitage L, Picard F, Guyomarch S, Cellier C, Parry G, Koumproglou R, Doonan JH, Estelle M, Godin C, Kepinski S, Bennett M, De Veylder L, Traas J (2011) The auxin signalling network translates dynamic input into robust patterning at the shoot apex. Mol Syst Biol 7:508PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Lee S, Sundaram S, Armitage L, Evans JP, Hawkes T, Kepinski S, Ferro N, Napier RM (2014) Defining binding efficiency and specificity of auxins for SCF(TIR1/AFB)-Aux/IAA co-receptor complex formation. ACS Chem Biol 9:673–682PubMedCrossRefGoogle Scholar
  173. 173.
    Korasick DA, Westfall CS, Lee SG, Nanao MH, Dumas R, Hagen G, Guilfoyle TJ, Jez JM, Strader LC (2014) Molecular basis for AUXIN RESPONSE FACTOR protein interaction and the control of auxin response repression. Proc Natl Acad Sci U S A 111:5427–5432PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Nanao MH, Vinos-Poyo T, Brunoud G, Thévenon E, Mazzoleni M, Mast D, Lainé S, Wang S, Hagen G, Li H, Guilfoyle TJ, Parcy F, Vernoux T, Dumas R (2014) Structural basis for oligomerization of auxin transcriptional regulators. Nat Commun 7:3617Google Scholar
  175. 175.
    Shimizu-Mitao Y, Kakimoto T (2014) Auxin sensitivities of all Arabidopsis Aux/IAAs for degradation in the presence of every TIR1/AFB. Plant Cell Physiol 55:1405–1459CrossRefGoogle Scholar
  176. 176.
    Boer DR, Freire-Rios A, van den Berg WA, Saaki T, Manfield IW, Kepinski S, López-Vidrieo I, Franco-Zorrilla JM, de Vries SC, Solano R, Weijers D, Coll M (2014) Structural basis for DNA binding specificity by the auxin-dependent ARF transcription factors. Cell 156:577–589PubMedCrossRefGoogle Scholar
  177. 177.
    Kakimoto T (1996) CKI1, a histidine kinase homolog implicated in cytokinin signal transduction. Science 274:982–985PubMedCrossRefGoogle Scholar
  178. 178.
    Inoue T, Higuchi M, Hashimoto Y, Seki M, Kobayashi M, Kato T, Tabata S, Shinozaki K, Kakimoto T (2001) Identification of CRE1 as a cytokinin receptor from Arabidopsis. Nature 409:1060–1063PubMedCrossRefGoogle Scholar
  179. 179.
    Mähönen AP, Bonke M, Kauppinen L, Riikonen M, Benfey PN, Helariutta Y (2000) A novel two-component hybrid molecule regulates vascular morphogenesis of the Arabidopsis root. Genes Dev 14:2938–2943PubMedPubMedCentralCrossRefGoogle Scholar
  180. 180.
    Hwang I, Sheen J (2001) Two-component circuitry in Arabidopsis cytokinin signal transduction. Nature 413:383–389PubMedCrossRefGoogle Scholar
  181. 181.
    Ueguchi C, Sato S, Kato T, Tabata S (2001) The AHK4 gene involved in the cytokinin-signaling pathway as a direct receptor molecule in Arabidopsis thaliana. Plant Cell Physiol 42:751–755PubMedCrossRefGoogle Scholar
  182. 182.
    Higuchi M, Pischke MS, Mahonen AP, Miyawaki K, Hashimoto Y, Seki M, Kobayashi M, Shinozaki K, Kato T, Tabata S, Helariutta Y, Sussman MR, Kakimoto T (2004) In planta functions of the Arabidopsis cytokinin receptor family. Proc Natl Acad Sci U S A 101:8821–8826PubMedPubMedCentralCrossRefGoogle Scholar
  183. 183.
    Nishimura C, Ohashi Y, Sato S, Kato T, Tabata S, Ueguchi C (2004) Histidine kinase homologs that act as cytokinin receptors possess overlapping functions in the regulation of shoot and root growth in Arabidopsis. Plant Cell 16:1365–1377PubMedPubMedCentralCrossRefGoogle Scholar
  184. 184.
    Suzuki T, Miwa K, Ishikawa K, Yamada H, Aiba H, Mizuno T (2001) The Arabidopsis sensor His-kinase, AHK4, can respond to cytokinins. Plant Cell Physiol 42:107–113PubMedCrossRefGoogle Scholar
  185. 185.
    Romanov GA, Spíchal L, Lomin SN, Strnad M, Schmülling T (2005) A live cell hormone-binding assay on transgenic bacteria expressing a eukaryotic receptor protein. Anal Biochem 347:129–134PubMedCrossRefGoogle Scholar
  186. 186.
    Romanov GA, Lomin SN, Schmülling T (2006) Biochemical characteristics and ligand-binding properties of Arabidopsis cytokinin receptor AHK3 compared to CRE1/AHK4 as revealed by a direct binding assay. J Exp Bot 57:4051–4058PubMedCrossRefGoogle Scholar
  187. 187.
    Stolz A, Riefler M, Lomin SN, Achazi K, Romanov GA, Schmülling T (2011) The specificity of cytokinin signalling in Arabidopsis thaliana is mediated by differing ligand affinities and expression profiles of the receptors. Plant J 67:157–168PubMedCrossRefGoogle Scholar
  188. 188.
    Mizuno T (2005) Two-component phosphorelay signal transduction systems in plants: from hormone responses to circadian rhythms. Biosci Biotechnol Biochem 69(12):2263–2276PubMedCrossRefGoogle Scholar
  189. 189.
    Schaller GE, Kieber JJ, Shiu S-H (2008) Two-component signaling elements and histidyl-aspartyl phosphorelays. In: Somerville C, Meyerowitz E (eds) The Arabidopsis book. American Society of Plant Biologists, Rockville, MDGoogle Scholar
  190. 190.
    Sakai H, Honma T, Aoyama T, Sato S, Kato T, Tabata S, Oka A (2001) ARR1, a transcription factor for genes immediately responsive to cytokinins. Science 294:1519–1521PubMedCrossRefGoogle Scholar
  191. 191.
    Mason MG, Mathews DE, Argyros DA, Maxwell BB, Kieber JJ, Alonso JM, Ecker JR, Schaller GE (2005) Multiple type-B response regulators mediate cytokinin signal transduction in Arabidopsis. Plant Cell 17:3007–3018PubMedPubMedCentralCrossRefGoogle Scholar
  192. 192.
    Hutchison CE, Li J, Argueso C, Gonzalez M, Lee E, Lewis MW, Maxwell BB, Perdue TD, Schaller GE, Alonso JM, Ecker JR, Kieber JJ (2006) The Arabidopsis histidine phosphotransfer proteins are redundant positive regulators of cytokinin signaling. Plant Cell 18:3073–3087PubMedPubMedCentralCrossRefGoogle Scholar
  193. 193.
    To JP, Deruere J, Maxwell BB, Morris VF, Hutchison CE, Ferreira FJ, Schaller GE, Kieber JJ (2007) Cytokinin regulates type-A Arabidopsis Response Regulator activity and protein stability via two-component phosphorelay. Plant Cell 19:3901–3914PubMedPubMedCentralCrossRefGoogle Scholar
  194. 194.
    Argyros RD, Mathews DE, Chiang YH, Palmer CM, Thibault DM, Etheridge N, Argyros DA, Mason MG, Kieber JJ, Schaller GE (2008) Type B response regulators of Arabidopsis play key roles in cytokinin signaling and plant development. Plant Cell 20:2102–2116PubMedPubMedCentralCrossRefGoogle Scholar
  195. 195.
    Kieber JJ, Schaller GE (2014) Cytokinins. The Arabidopsis Book 12, e0168PubMedPubMedCentralCrossRefGoogle Scholar
  196. 196.
    Kim HJ, Chiang YH, Kieber JJ, Schaller GE (2013) SCF(KMD) controls cytokinin signaling by regulating the degradation of type-B response regulators. Proc Natl Acad Sci U S A 110:10028–10033PubMedPubMedCentralCrossRefGoogle Scholar
  197. 197.
    Caesar K, Thamm AM, Witthoft J, Elgass K, Huppenberger P, Grefen C, Horak J, Harter K (2011) Evidence for the localization of the Arabidopsis cytokinin receptors AHK3 and AHK4 in the endoplasmic reticulum. J Exp Bot 62:5571–5580PubMedPubMedCentralCrossRefGoogle Scholar
  198. 198.
    Wulfetange K, Lomin SN, Romanov GA, Stolz A, Heyl A, Schmulling T (2011) The cytokinin receptors of Arabidopsis are located mainly to the endoplasmic reticulum. Plant Physiol 156:1808–1818PubMedPubMedCentralCrossRefGoogle Scholar
  199. 199.
    Rashotte AM, Mason MG, Hutchison CE, Ferreira FJ, Schaller GE, Kieber JJ (2006) A subset of Arabidopsis AP2 transcription factors mediates cytokinin responses in concert with a two-component pathway. Proc Natl Acad Sci U S A 103:11081–11085PubMedPubMedCentralCrossRefGoogle Scholar
  200. 200.
    Sakuma Y, Liu Q, Dubouzet JG, Abe H, Shinozaki K, Yamaguchi-Shinozaki K (2002) DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochem Biophys Res Commun 290:998–1009PubMedCrossRefGoogle Scholar
  201. 201.
    Nakano T, Suzuki K, Fujimura T, Shinshi H (2006) Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol 140:411–432PubMedPubMedCentralCrossRefGoogle Scholar
  202. 202.
    Rashotte AM, Goertzen LR (2010) The CRF domain defines cytokinin response factor proteins in plants. BMC Plant Biol 10:74PubMedPubMedCentralCrossRefGoogle Scholar
  203. 203.
    Ulmasov T, Murfett J, Hagen G, Guilfoyle TJ (1997) Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell 9:1963–1971PubMedPubMedCentralCrossRefGoogle Scholar
  204. 204.
    Band LR, Wells DM, Larrieu A, Sun J, Middleton AM, French AP, Brunoud G, Sato EM, Wilson MH, Péret B, Oliva M, Swarup R, Sairanen I, Parry G, Ljung K, Beeckman T, Garibaldi JM, Estelle M, Owen MR, Vissenberg K, Hodgman TC, Pridmore TP, King JR, Vernoux T, Bennett MJ (2012) Root gravitropism is regulated by a transient lateral auxin gradient controlled by a tipping-point mechanism. Proc Natl Acad Sci U S A 109:4668–4673PubMedPubMedCentralCrossRefGoogle Scholar
  205. 205.
    Brunoud G, Wells DM, Oliva M, Larrieu A, Mirabet V, Burrow AH, Beeckman T, Kepinski S, Traas J, Bennett MJ, Vernoux T (2012) A novel sensor to map auxin response and distribution at high spatio-temporal resolution. Nature 482:103–106PubMedCrossRefGoogle Scholar
  206. 206.
    Su YH, Liu YB, Zhang XS (2011) Auxin-cytokinin interaction regulates meristem development. Mol Plant 4:616–625PubMedPubMedCentralCrossRefGoogle Scholar
  207. 207.
    Bencivenga S, Simonini S, Benková E, Colombo L (2012) The transcription factors BEL1 and SPL are required for cytokinin and auxin signaling during ovule development in Arabidopsis. Plant Cell 24:2886–2897PubMedPubMedCentralCrossRefGoogle Scholar
  208. 208.
    Leibfried A, To JP, Busch W, Stehling S, Kehle A, Demar M, Kieber JJ, Lohmann JU (2005) WUSCHEL controls meristem function by direct regulation of cytokinin-inducible response regulators. Nature 438:1172–1175PubMedCrossRefGoogle Scholar
  209. 209.
    Domagalska MA, Leyser O (2011) Signal integration in the control of shoot branching. Nat Rev Mol Cell Biol 12:211–221PubMedCrossRefGoogle Scholar
  210. 210.
    Laskowski MJ, Williams ME, Nusbaum HC, Sussex IM (1995) Formation of lateral root meristems is a two-stage process. Development 121:3303–3310PubMedGoogle Scholar
  211. 211.
    Laskowski M, Grieneisen VA, Hofhuis H, Hove CA, Hogeweg P, Maree AF, Scheres B (2008) Root system architecture from coupling cell shape to auxin transport. PLoS Biol 6:e307PubMedPubMedCentralCrossRefGoogle Scholar
  212. 212.
    Marhavý P, Bielach A, Abas L, Abuzeineh A, Duclercq J, Tanaka H, Pařezová M, Petrášek J, Friml J, Kleine-Vehn J, Benková E (2011) Cytokinin modulates endocytic trafficking of PIN1 auxin efflux carrier to control plant organogenesis. Dev Cell 21:796–804PubMedCrossRefGoogle Scholar
  213. 213.
    Hardtke CS, Berleth T (1998) The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development. EMBO J 17:1405–1411PubMedPubMedCentralCrossRefGoogle Scholar
  214. 214.
    Hamann T, Benkova E, Baurle I, Kientz M, Jurgens G (2002) The Arabidopsis BODENLOS gene encodes an auxin response protein inhibiting MONOPTEROS-mediated embryo patterning. Genes Dev 16:1610–1615PubMedPubMedCentralCrossRefGoogle Scholar
  215. 215.
    Schlereth A, Möller B, Liu W, Kientz M, Flipse J, Rademacher EH, Schmid M, Jürgens G, Weijers D (2010) MONOPTEROS controls embryonic root initiation by regulating a mobile transcription factor. Nature 464:913–916PubMedCrossRefGoogle Scholar
  216. 216.
    Šimášková M, O’Brien JA, Khan M, Van Noorden G, Ötvös K, Vieten A, De Clercq I, Van Haperen JM, Cuesta C, Hoyerová K, Vanneste S, Marhavý P, Wabnik K, Van Breusegem F, Nowack M, Murphy A, Friml J, Weijers D, Beeckman T, Benková E (2015) Cytokinin response factors regulate PIN-FORMED auxin transporters. Nat Commun 6:8717PubMedCrossRefGoogle Scholar
  217. 217.
    Dello Ioio R, Linhares FS, Scacchi E, Casamitjana-Martinez E, Heidstra R, Costantino P, Sabatini S (2007) Cytokinins determine Arabidopsis root-meristem size by controlling cell differentiation. Curr Biol 17:678–682PubMedCrossRefGoogle Scholar
  218. 218.
    Vieten A, Vanneste S, Wisniewska J, Benkova E, Benjamins R, Beeckman T, Luschnig C, Friml J (2005) Functional redundancy of PIN proteins is accompanied by auxin-dependent cross-regulation of PIN expression. Development 132:4521–4531PubMedCrossRefGoogle Scholar
  219. 219.
    Pernisová M, Klima P, Horak J, Valkova M, Malbeck J, Soucek P, Reichman P, Hoyerova K, Dubova J, Friml J, Zazimalova E, Hejatko J (2009) Cytokinins modulate auxin-induced organogenesis in plants via regulation of the auxin efflux. Proc Natl Acad Sci U S A 106:3609–3614PubMedPubMedCentralCrossRefGoogle Scholar
  220. 220.
    Zhang W, To JP, Cheng CY, Eric Schaller G, Kieber JJ (2011) Type-A response regulators are required for proper root apical meristem function through the post-transcriptional regulation of PIN auxin efflux carriers. Plant J 68:1–10PubMedCrossRefGoogle Scholar
  221. 221.
    Marhavý P, Duclercq J, Weller B, Feraru E, Bielach A, Offringa R, Friml J, Schwechheimer C, Murphy A, Benková E (2014) Cytokinin controls polarity of PIN1-dependent auxin transport during lateral root organogenesis. Curr Biol 24:1031–1037PubMedCrossRefGoogle Scholar
  222. 222.
    Jones B, Gunneras SA, Petersson SV, Tarkowski P, Graham N, May S, Dolezal K, Sandberg G, Ljung K (2010) Cytokinin regulation of auxin synthesis in Arabidopsis involves a homeostatic feedback loop regulated via auxin and cytokinin signal transduction. Plant Cell 22:2956–2969PubMedPubMedCentralCrossRefGoogle Scholar
  223. 223.
    Eklöf S, Åstot C, Blackwell J, Moritz T, Olsson O, Sandberg G (1997) Auxin-cytokinin interactions in wild-type and transgenic tobacco. Plant Cell Physiol 38:225–235CrossRefGoogle Scholar
  224. 224.
    Nordström A, Tarkowski P, Tarkowska D, Norbaek R, Astot C, Dolezal K, Sandberg G (2004) Auxin regulation of cytokinin biosynthesis in Arabidopsis thaliana: a factor of potential importance for auxin-cytokinin-regulated development. Proc Natl Acad Sci U S A 101:8039–8044PubMedPubMedCentralCrossRefGoogle Scholar
  225. 225.
    Carabelli M, Possenti M, Sessa G, Ciolfi A, Sassi M, Morelli G, Ruberti I (2007) Canopy shade causes a rapid and transient arrest in leaf development through auxin-induced cytokinin oxidase activity. Genes Dev 21:1863–1868PubMedPubMedCentralCrossRefGoogle Scholar
  226. 226.
    Gordon SP, Chickarmane VS, Ohno C, Meyerowitz EM (2009) Multiple feedback loops through cytokinin signaling control stem cell number within the Arabidopsis shoot meristem. Proc Natl Acad Sci U S A 106:16529–16534PubMedPubMedCentralCrossRefGoogle Scholar
  227. 227.
    Heisler MG, Ohno C, Das P, Sieber P, Reddy GV, Long JA, Meyerowitz EM (2005) Patterns of auxin transport and gene expression during primordium development revealed by live imaging of the Arabidopsis inflorescence meristem. Curr Biol 15:1899–1911PubMedCrossRefGoogle Scholar
  228. 228.
    Hamant O, Nogué F, Belles-Boix E, Jublot D, Grandjean O, Traas J, Pautot V (2002) The KNAT2 homeodomain protein interacts with ethylene and cytokinin signaling. Plant Physiol 130:657–665PubMedPubMedCentralCrossRefGoogle Scholar
  229. 229.
    Lee BH, Johnston R, Yang Y, Gallavotti A, Kojima M, Travençolo BA, Costa LF, Sakakibara H, Jackson D (2009) Studies of aberrant phyllotaxy1 mutants of maize indicate complex interactions between auxin and cytokinin signaling in the shoot apical meristem. Plant Physiol 150:205–216PubMedPubMedCentralCrossRefGoogle Scholar
  230. 230.
    Besnard F, Refahi Y, Morin V, Marteaux B, Brunoud G, Chambrier P, Rozier F, Mirabet V, Legrand J, Lainé S, Thévenon E, Farcot E, Cellier C, Das P, Bishopp A, Dumas R, Parcy F, Helariutta Y, Boudaoud A, Godin C, Traas J, Guédon Y, Vernoux T (2014) Cytokinin signalling inhibitory fields provide robustness to phyllotaxis. Nature 16:417–421Google Scholar
  231. 231.
    Voß U, Bishopp A, Farcot E, Bennett MJ (2014) Modelling hormonal response and development. Trends Plant Sci 19:311–319PubMedPubMedCentralCrossRefGoogle Scholar
  232. 232.
    Dello Ioio R, Galinha C, Fletcher AG, Grigg SP, Molnar A, Willemsen V, Scheres B, Sabatini S, Baulcombe D, Maini PK, Tsiantis M (2012) A PHABULOSA/cytokinin feedback loop controls root growth in Arabidopsis. Curr Biol 22:1699–1704PubMedCrossRefGoogle Scholar
  233. 233.
    Muraro D, Mellor N, Pound MP, Help H, Lucas M, Chopard J, Byrne HM, Godin C, Hodgman TC, King JR, Pridmore TP, Helariutta Y, Bennett MJ, Bishopp A (2014) Integration of hormonal signaling networks and mobile microRNAs is required for vascular patterning in Arabidopsis roots. Proc Natl Acad Sci U S A 111:857–862PubMedCrossRefGoogle Scholar
  234. 234.
    Carlsbecker A, Lee JY, Robertsm CJ, Dettmer J, Lehesranta S, Zhou J, Lindgren O, Moreno-Risueno MA, Vatén A, Thitamadee S, Campilho A, Sebastian J, Bowman JL, Helariutta Y, Benfey PN (2010) Cell signalling by microRNA165/6 directs gene dose-dependent root cell fate. Nature 465:316–321PubMedPubMedCentralCrossRefGoogle Scholar
  235. 235.
    De Rybel B, Adibi M, Breda AS, Wendrich JR, Smit ME, Novák O, Yamaguchi N, Yoshida S, Van Isterdael G, Palovaara J, Nijsse B, Boekschoten MV, Hooiveld G, Beeckman T, Wagner D, Ljung K, Fleck C, Weijers D (2014) Plant development. Integration of growth and patterning during vascular tissue formation in Arabidopsis. Science 345:1255215PubMedCrossRefGoogle Scholar
  236. 236.
    De Rybel B, Möller B, Yoshida S, Grabowicz I, Barbier de Reuille P, Boeren S, Smith RS, Borst JW, Weijers D (2013) A bHLH complex controls embryonic vascular tissue establishment and indeterminate growth in Arabidopsis. Dev Cell 24:426–437PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Institute of Science and TechnologyKlosterneuburgAustria

Personalised recommendations