Skip to main content
Book cover

Mitochondria pp 197–216Cite as

Localizing mRNAs Encoding Mitochondrial Proteins in Yeast by Fluorescence Microscopy and Subcellular Fractionation

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1567))

Abstract

Mitochondria are thought to have evolved from ancestral proteobacteria and, as a result of symbiosis, became an indispensable organelle in all eukaryotic cells. Mitochondria perform essential functions that provide the cell with ATP, amino acids, phospholipids, and both heme and iron-sulfur clusters. However, only 1% of mitochondrial proteins are encoded by the mitochondrial genome, while the remaining 99% are encoded in the nucleus. This raises a logistical challenge to the cell, as these nuclear-encoded proteins have to be translated, delivered to the mitochondrial surface, and translocated to its various compartments. Over the past decade, it was shown that subsets of mRNAs encoding mitochondrial proteins (mMPs) are localized to the mitochondrial surface in both yeast and mammalian cells. Moreover, factors (e.g., RNA-binding proteins) have been discovered that facilitate mMP targeting, and their loss leads to RNA mislocalization and defects in mitochondrial function (e.g., deficient respiration). Therefore, there is a demand in the field of mitochondrial biology to accurately measure mMP localization to the mitochondrial surface. In this chapter, we describe two techniques that allow for the visualization of mMPs using single-molecule fluorescent in situ hybridization and preparation of a highly enriched mitochondrial fraction followed by quantitative real-time PCR. Together, these techniques constitute powerful tools to link changes in mMP trafficking to defects in mitochondrial physiology.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Vazquez-Pianzola P, Suter B (2012) Conservation of the RNA transport machineries and their coupling to translation control across eukaryotes. Comp Funct Genomics 2012:287852

    Article  PubMed  PubMed Central  Google Scholar 

  2. Zarnack K, Feldbrügge M (2007) mRNA trafficking in fungi. Mol Genet Genomics 278:347–359

    Article  CAS  PubMed  Google Scholar 

  3. Okita TW, Choi SB (2002) mRNA localization in plants: targeting to the cell’s cortical region and beyond. Curr Opin Plant Biol 5:553–559

    Article  CAS  PubMed  Google Scholar 

  4. Lécuyer E, Yoshida H, Parthasarathy N, Alm C, Babak T, Cerovina T et al (2007) Global analysis of mRNA localization reveals a prominent role in organizing cellular architecture and function. Cell 131:174–187

    Article  PubMed  Google Scholar 

  5. Chartrand P, Singer RH, Long RM (2001) RNP localization and transport in yeast. Annu Rev Cell Dev Biol 17:297–310

    Article  CAS  PubMed  Google Scholar 

  6. Rodriguez AJ, Czaplinski K, Condeelis JS, Singer RH (2008) Mechanisms and cellular roles of local protein synthesis in mammalian cells. Curr Opin Cell Biol 20:144–149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chabanon H, Mickleburgh I, Hesketh J (2004) Zipcodes and postage stamps: mRNA localisation signals and their trans-acting binding proteins. Brief Funct Genomic Proteomic 3:240–256

    Article  CAS  PubMed  Google Scholar 

  8. Pan F, Hüttelmaier S, Singer RH, Gu W (2007) ZBP2 facilitates binding of ZBP1 to beta-actin mRNA during transcription. Mol Cell Biol 27:8340–8351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Shen Z, Paquin N, Forget A, Chartrand P (2009) Nuclear shuttling of She2p couples ASH1 mRNA localization to its translational repression by recruiting Loc1p and Puf6p. Mol Biol Cell 20:2265–2275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Böhl F, Kruse C, Frank A, Ferring D, Jansen RP (2000) She2p, a novel RNA-binding protein tethers ASH1 mRNA to the Myo4p myosin motor via She3p. EMBO J 19:5514–5524

    Article  PubMed  PubMed Central  Google Scholar 

  11. Gagnon J, Mowry K (2011) Molecular motors: directing traffic during RNA localization. Crit Rev Biochem Mol Biol 46:229–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gerst JE (2008) Message on the web: mRNA and ER co-trafficking. Trends Cell Biol 18:68–76

    Article  CAS  PubMed  Google Scholar 

  13. Saint-Georges Y, Garcia M, Delaveau T, Jourdren L, Le Crom S, Lemoine S et al (2008) Yeast mitochondrial biogenesis: a role for the PUF RNA-binding protein puf3p in mRNA localization. PLoS One 3:e2293

    Article  PubMed  PubMed Central  Google Scholar 

  14. Gadir N, Haim-Vilmovsky L, Kraut-Cohen J, Gerst JE (2011) Localization of mRNAs coding for mitochondrial proteins in the yeast Saccharomyces cerevisiae. RNA 17:1551–1565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Weis BL, Schleiff E, Zerges W (2013) Protein targeting to subcellular organelles via mRNA localization. Biochim Biophys Acta 1833:260–273

    Article  CAS  PubMed  Google Scholar 

  16. Zipor G, Haim-Vilmovsky L, Gelin-Licht R, Gadir N, Brocard C, Gerst JE (2009) Localization of mRNAs coding for peroxisomal proteins in the yeast, Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 106:19848–19853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Trautwein M, Dengjel J, Schirle M, Spang A (2004) Arf1p provides an unexpected link between COPI vesicles and mRNA in Saccharomyces cerevisiae. Mol Biol Cell 15:5021–5037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bi J, Tsai N-P, Lu H-Y, Loh HH, Wei L-N (2007) Copb1-facilitated axonal transport and translation of kappa opioid-receptor mRNA. Proc Natl Acad Sci U S A 104:13810–13815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lerner RS, Seiser RM, Zheng T, Lager PJ, Reedy MC, Keene JD et al (2003) Partitioning and translation of mRNAs encoding soluble proteins on membrane-bound ribosomes. RNA 9:1123–1137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sylvestre J, Vialette S, Corral Debrinski M, Jacq C (2003) Long mRNAs coding for yeast mitochondrial proteins of prokaryotic origin preferentially localize to the vicinity of mitochondria. Genome Biol 4:R44

    Article  PubMed  PubMed Central  Google Scholar 

  21. Du T, Schmid M, Jansen R (2007) Why cells move messages: the biological functions of mRNA localization. Semin Cell Dev Biol 18:171–177

    Article  CAS  PubMed  Google Scholar 

  22. Aronov S, Gelin-licht R, Zipor G, Haim L, Safran E, Gerst JE (2007) mRNAs encoding polarity and exocytosis factors are cotransported with the cortical endoplasmic reticulum to the incipient bud in Saccharomyces cerevisiae. Mol Cell Biol 27:3441–3455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Darzacq X, Powrie E, Gu W, Singer RH, Zenklusen D (2003) RNA asymmetric distribution and daughter/mother differentiation in yeast. Curr Opin Microbiol 6:614–620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Elstner M, Andreoli C, Klopstock T, Meitinger T, Prokisch H (2009) The mitochondrial proteome database: MitoP2. Methods Enzymol 457:3–20

    Article  CAS  PubMed  Google Scholar 

  25. Ellenrieder L, Mårtensson CU, Becker T (2015) Biogenesis of mitochondrial outer membrane proteins, problems and diseases. Biol Chem 396:1199–1213

    Article  CAS  PubMed  Google Scholar 

  26. MacKenzie JA, Payne RM (2007) Mitochondrial protein import and human health and disease. Biochim Biophys Acta 1772:509–523

    Article  CAS  PubMed  Google Scholar 

  27. Rugarli EI, Langer T (2012) Mitochondrial quality control: a matter of life and death for neurons. EMBO J 31:1336–1349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Neupert W, Herrmann JM (2007) Translocation of proteins into mitochondria. Annu Rev Biochem 76:723–749

    Article  CAS  PubMed  Google Scholar 

  29. Chacinska A, Koehler CM, Milenkovic D, Lithgow T, Pfanner N (2009) Importing mitochondrial proteins: machineries and mechanisms. Cell 138:628–644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kellems RE, Butow RA (1974) Cytoplasmic with yeast type 80 S ribosomes associated with yeast mitochondria. 3. Changes in the amount of bound ribosomes in response to changes in metabolic state. J Biol Chem 249:3304–3010

    CAS  PubMed  Google Scholar 

  31. Kellems RE, Allison VF, Butow RA (1975) Ribosomes to the outer membrane of isolated mitochondria. J Cell Biol 65:1–14

    Article  CAS  PubMed  Google Scholar 

  32. Eliyahu E, Pnueli L, Melamed D, Scherrer T, Gerber AP, Pines O et al (2010) Tom20 mediates localization of mRNAs to mitochondria in a translation-dependent manner. Mol Cell Biol 30:284–294

    Article  CAS  PubMed  Google Scholar 

  33. Marc P, Margeot A, Devaux F, Blugeon C, Corral-Debrinski M, Jacq C (2002) Genome-wide analysis of mRNAs targeted to yeast mitochondria. EMBO Rep 3:159–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Williams CC, Jan CH, Weissman JS (2014) Targeting and plasticity of mitochondrial proteins revealed by proximity-specific ribosome profiling. Science 346:748–751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Haim-Vilmovsky L, Gerst JE (2009) m-TAG: a PCR-based genomic integration method to visualize the localization of specific endogenous mRNAs in vivo in yeast. Nat Protoc 4:1274–1284

    Article  CAS  PubMed  Google Scholar 

  36. Haim L, Zipor G, Aronov S, Gerst JE (2007) A genomic integration method to visualize localization of endogenous mRNAs in living yeast. Nat Methods 4:409–412

    CAS  PubMed  Google Scholar 

  37. Haim-Vilmovsky L, Gadir N, Herbst R, Gerst J (2011) A genomic integration method for the simultaneous visualization of endogenous mRNAs and their translation products in living yeast. RNA 17:2249–2255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Slobodin B, Gerst JE (2010) A novel mRNA affinity purification technique for the identification of interacting proteins and transcripts in ribonucleoprotein complexes. RNA 16:2277–2290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Garcia M, Darzacq X, Devaux F, Singer RH, Jacq C (2007) Yeast mitochondrial transcriptomics. Methods Mol Biol 372:505–528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zabezhinsky D, Slobodin B, Rapaport D, Gerst JE (2016) An essential role for COPI in mRNA trafficking to the mitochondria and mitochondrial function. Cell Rep 15:540–549

    Article  CAS  PubMed  Google Scholar 

  41. Kaiser C, Michaelis S, Mitchell A (1994) Methods in yeast genetics: a Cold Spring Harbor laboratory course manual. Cold Spring Harbor Press, Cold Spring Harbor, NY

    Google Scholar 

  42. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  44. Teste MA, Duquenne M, François JM, Parrou JL (2009) Validation of reference genes for quantitative expression analysis by real-time RT-PCR in Saccharomyces cerevisiae. BMC Mol Biol 10:99

    Article  PubMed  PubMed Central  Google Scholar 

  45. Dobzinski N, Chuartzman SG, Kama R, Schuldiner M, Gerst JE (2015) Starvation-dependent regulation of golgi quality control links the TOR signaling and vacuolar protein sorting pathways. Cell Rep 12:1876–1886

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants to J.E.G. from the Minerva Foundation (Federal German Ministry for Education and Research), Germany, the German-Israel Foundation, Germany (I-1190-96.13/2012), and the Estate of Astrachan Olga Klein. J.E.G. holds the Besen-Brender Chair in Microbiology and Parasitology, Weizmann Institute of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey E. Gerst .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Zabezhinsky, D., Sperber, H., Gerst, J.E. (2017). Localizing mRNAs Encoding Mitochondrial Proteins in Yeast by Fluorescence Microscopy and Subcellular Fractionation. In: Mokranjac, D., Perocchi, F. (eds) Mitochondria. Methods in Molecular Biology, vol 1567. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6824-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6824-4_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6822-0

  • Online ISBN: 978-1-4939-6824-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics