Flow Cytometric Isolation and Differentiation of Adipogenic Progenitor Cells into Brown and Brite/Beige Adipocytes

  • Jochen Steinbring
  • Antonia Graja
  • Anne-Marie Jank
  • Tim J. Schulz
Part of the Methods in Molecular Biology book series (MIMB, volume 1566)


Aside from mature adipocytes, adipose tissue harbors several distinct cell populations including immune cells, endothelial cells, and adipogenic progenitor cells (AdPCs). AdPCs represent the reservoir of regenerative cells that replenishes adipocytes during normal cellular turnover and during times of increased demand for triglyceride-storage capacity. The worldwide increase in pathologies associated with the metabolic syndrome, such as obesity and type-2 diabetes, has heightened public and scientific interest in adipose tissues and the cell biological processes of adipose tissue formation and function. Two distinct types of fat cells are known: White and brown adipocytes. Especially brown adipose tissue (BAT) has received considerable attention due to its unique capacity for thermogenic energy expenditure and potential role in the treatment of adiposity. Accordingly, the cold-induced conversion of white into brown-like adipocytes has become a feasible approach in humans and a study-subject in rodents to better understand the underlying molecular processes. Fluorescence-activated cell sorting (FACS) provides a method to isolate AdPCs and other cell populations from adipose tissue by using antibodies detecting unique surface markers. We here describe an approach to isolate cells committed to the adipogenic lineage and summarize established protocols to differentiate FACS-purified primary AdPCs into UCP1-expressing brown adipocytes under in vitro conditions.

Key words

Brown/brite adipose tissue White adipose tissue Adipogenic progenitor cells Fluorescence-activated cell sorting Cell surface marker antibodies Brown adipogenesis 



This work was supported by grants from the German Research Foundation (DFG; grant # SCHU 2445/2-1) and the European Research Council (grant # ERC-StG-2012-311082) to T.J.S. The authors gratefully acknowledge support from the German Center for Diabetes Research (DZD).


  1. 1.
    World Health Organization (2014) Obesity and overweight fact sheet N°311.
  2. 2.
    Bluher M (2014) Adipokines—removing road blocks to obesity and diabetes therapy. Mol Metab 3:230–240CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Kershaw EE, Flier JS (2004) Adipose tissue as an endocrine organ. J Clin Endocrinol Metab 89:2548–2556CrossRefPubMedGoogle Scholar
  4. 4.
    Zhang Y, Proenca R, Maffei M et al (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372:425–432CrossRefPubMedGoogle Scholar
  5. 5.
    Nedergaard J, Bengtsson T, Cannon B (2007) Unexpected evidence for active brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab 293:E444–E452CrossRefPubMedGoogle Scholar
  6. 6.
    Cypess AM, Lehman S, Williams G et al (2009) Identification and importance of brown adipose tissue in adult humans. N Engl J Med 360:1509–1517CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Saito M, Okamatsu-Ogura Y, Matsushita M et al (2009) High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes 58:1526–1531CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM et al (2009) Cold-activated brown adipose tissue in healthy men. N Engl J Med 360:1500–1508CrossRefPubMedGoogle Scholar
  9. 9.
    Virtanen KA, Lidell ME, Orava J et al (2009) Functional brown adipose tissue in healthy adults. N Engl J Med 360:1518–1525CrossRefPubMedGoogle Scholar
  10. 10.
    Zingaretti MC, Crosta F, Vitali A et al (2009) The presence of UCP1 demonstrates that metabolically active adipose tissue in the neck of adult humans truly represents brown adipose tissue. FASEB J 23:3113–3120CrossRefPubMedGoogle Scholar
  11. 11.
    Yoneshiro T, Aita S, Matsushita M et al (2013) Recruited brown adipose tissue as an antiobesity agent in humans. J Clin Invest 123:3404–3408CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Matsushita M, Yoneshiro T, Aita S et al (2013) Impact of brown adipose tissue on body fatness and glucose metabolism in healthy humans. Int J Obes (Lond) 38:812–817CrossRefGoogle Scholar
  13. 13.
    Bakker LEH, Boon MR, van der Linden RAD et al (2014) Brown adipose tissue volume in healthy lean south Asian adults compared with white Caucasians: a prospective, case-controlled observational study. Lancet Diabetes Endocrinol 2:210–217CrossRefPubMedGoogle Scholar
  14. 14.
    Cannon B, Nedergaard J (2004) Brown adipose tissue: function and physiological significance. Physiol Rev 84:277–359CrossRefPubMedGoogle Scholar
  15. 15.
    Lichtenbelt WV, Kingma B, van der Lans A et al (2014) Cold exposure—an approach to increasing energy expenditure in humans. Trends Endocrinol Metab 25:165–167CrossRefPubMedGoogle Scholar
  16. 16.
    Schulz TJ, Tseng YH (2013) Brown adipose tissue: development, metabolism and beyond. Biochem J 453:167–178CrossRefPubMedGoogle Scholar
  17. 17.
    Rosen ED, Spiegelman BM (2014) What we talk about when we talk about fat. Cell 156:20–44CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Ishibashi J, Seale P (2010) Medicine. Beige can be slimming. Science 328:1113–1114CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Petrovic N, Walden TB, Shabalina IG et al (2010) Chronic peroxisome proliferator-activated receptor gamma (PPAR gamma) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1-containing adipocytes molecularly distinct from classic brown adipocytes. J Biol Chem 285:7153–7164CrossRefPubMedGoogle Scholar
  20. 20.
    Shabalina IG, Petrovic N, de Jong JM et al (2013) UCP1 in brite/beige adipose tissue mitochondria is functionally thermogenic. Cell Rep 5:1196–1203CrossRefPubMedGoogle Scholar
  21. 21.
    Kajimura S, Seale P, Spiegelman BM (2010) Transcriptional control of brown fat development. Cell Metab 11:257–262CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Kajimura S, Seale P, Kubota K et al (2009) Initiation of myoblast to brown fat switch by a PRDM16-C/EBP-beta transcriptional complex. Nature 460:1154–1158CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Seale P, Bjork B, Yang W et al (2008) PRDM16 controls a brown fat/skeletal muscle switch. Nature 454:961–967CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Seale P, Conroe HM, Estall J et al (2011) Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice. J Clin Invest 121:96–105CrossRefPubMedGoogle Scholar
  25. 25.
    Vitali A, Murano I, Zingaretti MC et al (2012) The adipose organ of obesity-prone C57BL/6J mice is composed of mixed white and brown adipocytes. J Lipid Res 53:619–629CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Himms-Hagen J, Melnyk A, Zingaretti MC et al (2000) Multilocular fat cells in WAT of CL-316243-treated rats derive directly from white adipocytes. Am J Physiol Cell Physiol 279:C670–C681PubMedGoogle Scholar
  27. 27.
    Barbatelli G, Murano I, Madsen L et al (2010) The emergence of cold-induced brown adipocytes in mouse white fat depots is determined predominantly by white to brown adipocyte transdifferentiation. Am J Physiol Endocrinol Metab 298:E1244–E1253CrossRefPubMedGoogle Scholar
  28. 28.
    Schulz TJ, Huang P, Huang TL et al (2013) Brown-fat paucity due to impaired BMP signalling induces compensatory browning of white fat. Nature 495:379–383CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Weisberg SP, McCann D, Desai M et al (2003) Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 112:1796–1808CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Rodeheffer MS, Birsoy K, Friedman JM (2008) Identification of white adipocyte progenitor cells in vivo. Cell 135:240–249CrossRefPubMedGoogle Scholar
  31. 31.
    Schulz TJ, Huang TL, Tran TT et al (2011) Identification of inducible brown adipocyte progenitors residing in skeletal muscle and white fat. Proc Natl Acad Sci USA 108:143–148CrossRefPubMedGoogle Scholar
  32. 32.
    Tang W, Zeve D, Suh JM et al (2008) White fat progenitor cells reside in the adipose vasculature. Science 322:583–586CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Berry DC, Stenesen D, Zeve D et al (2013) The developmental origins of adipose tissue. Development 140:3939–3949CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Berry R, Rodeheffer MS (2013) Characterization of the adipocyte cellular lineage in vivo. Nat Cell Biol 15:302–308CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Tseng YH, Kokkotou E, Schulz TJ et al (2008) New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure. Nature 454:1000–1004CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Vegiopoulos A, Muller-Decker K, Strzoda D et al (2010) Cyclooxygenase-2 controls energy homeostasis in mice by de novo recruitment of brown adipocytes. Science 328:1158–1161CrossRefPubMedGoogle Scholar
  37. 37.
    Steenhuis P, Pettway GJ, Ignelzi MA Jr (2008) Cell surface expression of stem cell antigen-1 (Sca-1) distinguishes osteo-, chondro-, and adipoprogenitors in fetal mouse calvaria. Calcif Tissue Int 82:44–56CrossRefPubMedGoogle Scholar
  38. 38.
    Himms-Hagen J, Cui J, Danforth E Jr et al (1994) Effect of CL-316,243, a thermogenic beta 3-agonist, on energy balance and brown and white adipose tissues in rats. Am J Physiol 266:R1371–R1382PubMedGoogle Scholar
  39. 39.
    Klaus S, Choy L, Champigny O et al (1994) Characterization of the novel brown adipocyte cell line HIB 1B. Adrenergic pathways involved in regulation of uncoupling protein gene expression. J Cell Sci 107:313–319PubMedGoogle Scholar
  40. 40.
    Lehr L, Canola K, Asensio C et al (2006) The control of UCP1 is dissociated from that of PGC-1alpha or of mitochondriogenesis as revealed by a study using beta-less mouse brown adipocytes in culture. FEBS Lett 580:4661–4666CrossRefPubMedGoogle Scholar
  41. 41.
    Orr JS, Kennedy AJ, Hasty AH (2013) Isolation of adipose tissue immune cells. J Vis Exp 22(75):e50707Google Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Jochen Steinbring
    • 1
  • Antonia Graja
    • 1
  • Anne-Marie Jank
    • 1
  • Tim J. Schulz
    • 1
    • 2
  1. 1.Research Group Adipocyte DevelopmentGerman Institute of Human Nutrition (DlfE)NuthetalGermany
  2. 2.German Center for Diabetes Research (DZD)München-NeuherbergGermany

Personalised recommendations