Flow Cytometry Assisted Isolation of Adipose Tissue Derived Stem Cells

  • Umesh D. Wankhade
  • Sushil G. Rane
Part of the Methods in Molecular Biology book series (MIMB, volume 1566)


Adipose tissue dysfunction is typically seen in metabolic diseases, particularly obesity and diabetes. White adipocytes store fat while brown adipocyte dissipates it via thermogenesis. In addition, beige adipocytes develop in white fat depots in response to stimulation of β-adrenergic pathways. It appears that the three types of adipocytes—white, brown, and beige—can be formed de novo from stem/precursor cells or via transdifferentiation. Identifying the presumptive progenitors that harbor capacity to differentiate to these distinct adipocyte cell types will enable their functional characterization. Moreover, the presence or absence of white/brown/beige adipocytes is correlated with metabolic dysfunction making their study of medical relevance. Robust, reliable, and reproducible methods of identification and isolation of adipocyte progenitors will stimulate further detailed understanding of white, brown, and beige adipogenesis.

Key words

Obesity Adipose tissue WAT BAT Beige adipose Stem cells Progenitor cells ADSCs Flow cytometry 


  1. 1.
    Sun K, Kusminski CM, Scherer PE (2011) Adipose tissue remodeling and obesity. J Clin Invest 121(6):2094–2101. doi: 10.1172/JCI45887 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Gesta S, Tseng YH, Kahn CR (2007) Developmental origin of fat: tracking obesity to its source. Cell 131(2):242–256. doi: 10.1016/j.cell.2007.10.004 CrossRefPubMedGoogle Scholar
  3. 3.
    Rosen ED, Spiegelman BM (2014) What we talk about when we talk about fat. Cell 156(1-2):20–44. doi: 10.1016/j.cell.2013.12.012 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Cannon B, Nedergaard J (2004) Brown adipose tissue: function and physiological significance. Physiol Rev 84(1):277–359. doi: 10.1152/physrev.00015.2003 CrossRefPubMedGoogle Scholar
  5. 5.
    Nedergaard J, Bengtsson T, Cannon B (2007) Unexpected evidence for active brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab 293(2):E444–E452. doi: 10.1152/ajpendo.00691.2006 CrossRefPubMedGoogle Scholar
  6. 6.
    Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, Kuo FC, Palmer EL, Tseng YH, Doria A, Kolodny GM, Kahn CR (2009) Identification and importance of brown adipose tissue in adult humans. N Engl J Med 360(15):1509–1517. doi: 10.1056/NEJMoa0810780 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Nedergaard J, Cannon B (2010) The changed metabolic world with human brown adipose tissue: therapeutic visions. Cell Metab 11(4):268–272. doi: 10.1016/j.cmet.2010.03.007 CrossRefPubMedGoogle Scholar
  8. 8.
    Enerback S (2010) Human brown adipose tissue. Cell Metab 11 (4):248–252.doi: 10.1016/j.cmet.2010.03.008, S1550-4131(10)00078-1 [pii]
  9. 9.
    Cousin B, Cinti S, Morroni M, Raimbault S, Ricquier D, Penicaud L, Casteilla L (1992) Occurrence of brown adipocytes in rat white adipose tissue: molecular and morphological characterization. J Cell Sci 103(Pt 4):931–942PubMedGoogle Scholar
  10. 10.
    Guerra C, Koza RA, Yamashita H, Walsh K, Kozak LP (1998) Emergence of brown adipocytes in white fat in mice is under genetic control. Effects on body weight and adiposity. J Clin Invest 102(2):412–420. doi: 10.1172/JCI3155 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Xue B, Rim JS, Hogan JC, Coulter AA, Koza RA, Kozak LP (2007) Genetic variability affects the development of brown adipocytes in white fat but not in interscapular brown fat. J Lipid Res 48(1):41–51CrossRefPubMedGoogle Scholar
  12. 12.
    Petrovic N, Walden TB, Shabalina IG, Timmons JA, Cannon B, Nedergaard J (2010) Chronic peroxisome proliferator-activated receptor gamma (PPAR gamma) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1-containing adipocytes molecularly distinct from classic brown adipocytes. J Biol Chem 285(10):7153–7164CrossRefPubMedGoogle Scholar
  13. 13.
    Wu J, Bostrom P, Sparks LM, Ye L, Choi JH, Giang AH, Khandekar M, Virtanen KA, Nuutila P, Schaart G, Huang K, Tu H, van Marken Lichtenbelt WD, Hoeks J, Enerback S, Schrauwen P, Spiegelman BM (2012) Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 150(2):366–376. doi: 10.1016/j.cell.2012.05.016 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Schulz TJ, Huang TL, Tran TT, Zhang H, Townsend KL, Shadrach JL, Cerletti M, McDougall LE, Giorgadze N, Tchkonia T, Schrier D, Falb D, Kirkland JL, Wagers AJ, Tseng YH (2011) Identification of inducible brown adipocyte progenitors residing in skeletal muscle and white fat. Proc Natl Acad Sci U S A 108(1):143–148. doi: 10.1073/pnas.1010929108 CrossRefPubMedGoogle Scholar
  15. 15.
    Wang QA, Tao C, Gupta RK, Scherer PE (2013) Tracking adipogenesis during white adipose tissue development, expansion and regeneration. Nat Med 19(10):1338–1344. doi: 10.1038/nm.3324 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Himms-Hagen J, Melnyk A, Zingaretti MC, Ceresi E, Barbatelli G, Cinti S (2000) Multilocular fat cells in WAT of CL-316243-treated rats derive directly from white adipocytes. Am J Physiol 279(3):C670–C681Google Scholar
  17. 17.
    Lee YH, Petkova AP, Mottillo EP, Granneman JG (2012) In vivo identification of bipotential adipocyte progenitors recruited by beta3-adrenoceptor activation and high-fat feeding. Cell Metab 15(4):480–491. doi: 10.1016/j.cmet.2012.03.009 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Bartelt A, Heeren J (2014) Adipose tissue browning and metabolic health. Nat Rev Endocrinol 10(1):24–36. doi: 10.1038/nrendo.2013.204 CrossRefPubMedGoogle Scholar
  19. 19.
    Harms M, Seale P (2013) Brown and beige fat: development, function and therapeutic potential. Nat Med 19(10):1252–1263. doi: 10.1038/nm.3361 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Cell Growth and Metabolism Section, Diabetes, Endocrinology, and Obesity BranchNIDDK, National Institutes of Health, Clinical Research CenterBethesdaUSA

Personalised recommendations