Isolation of Mouse Stromal Vascular Cells for Monolayer Culture

  • Longhua Liu
  • Louise D. Zheng
  • Sarah R. Donnelly
  • Margo P. Emont
  • Jun Wu
  • Zhiyong Cheng
Part of the Methods in Molecular Biology book series (MIMB, volume 1566)


Positive energy balance contributes to adipose tissue expansion and dysfunction, which accounts largely for obesity and related metabolic disorders. Thermogenic fat can dissipate energy, activation or induction of which may promote energy balance and address the pressing health issues. Recent studies have shown that stromal vascular fraction (SVF) from white adipose tissue (WAT) can develop both white and brown-like adipocyte phenotypes, thus serving as a unique model to study adipogenesis and thermogenesis. Here, we describe a protocol for effective isolation of mouse SVF from WAT, induction of differentiation, and detection of adipogenesis. Success tips for isolation and culture of SVF are also discussed.

Key words

Adipose tissue Stromal vascular fraction Adipogenesis Lipid accumulation Energy balance Obesity 



This work was supported in part by USDA National Institute of Food and Agriculture Hatch Project 1007334 (Z.C.).


  1. 1.
    Liu L, Zou P, Zheng L et al (2015) Tamoxifen reduces fat mass by boosting reactive oxygen species. Cell Death Dis 6:e1586CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Poloz Y, Stambolic V (2015) Obesity and cancer, a case for insulin signaling. Cell Death Dis 6:e2037CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Galic S, Oakhill JS, Steinberg GR (2010) Adipose tissue as an endocrine organ. Mol Cell Endocrinol 316:129–139CrossRefPubMedGoogle Scholar
  4. 4.
    Goossens GH, Blaak EE (2015) Adipose tissue dysfunction and impaired metabolic health in human obesity: a matter of oxygen? Front Endocrinol 6:55CrossRefGoogle Scholar
  5. 5.
    Abranches MV, Oliveira FC, Conceicao LL, Peluzio MD (2015) Obesity and diabetes: the link between adipose tissue dysfunction and glucose homeostasis. Nutr Res Rev 28:121–132CrossRefPubMedGoogle Scholar
  6. 6.
    Manna P, Jain SK (2015) Obesity, oxidative stress, adipose tissue dysfunction, and the associated health risks: causes and therapeutic strategies. Metab Syndr Relat Disord 13:423–444CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Saltiel AR (2012) Insulin resistance in the defense against obesity. Cell Metab 15:798–804CrossRefPubMedGoogle Scholar
  8. 8.
    Hill JO, Wyatt HR, Peters JC (2012) Energy balance and obesity. Circulation 126:126–132CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Cheng Z, Almeida FA (2014) Mitochondrial alteration in type 2 diabetes and obesity: an epigenetic link. Cell Cycle 13:890–897CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Cummins TD, Holden CR, Sansbury BE et al (2014) Metabolic remodeling of white adipose tissue in obesity. Am J Physiol Endocrinol Metab 307:E262–E277CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    van der Klaauw AA, Farooqi IS (2015) The hunger genes: pathways to obesity. Cell 161:119–132CrossRefPubMedGoogle Scholar
  12. 12.
    Cheng Z, Ristow M (2013) Mitochondria and metabolic homeostasis. Antioxid Redox Signal 19:240–242CrossRefPubMedGoogle Scholar
  13. 13.
    Nedergaard J, Cannon B (2014) The browning of white adipose tissue: some burning issues. Cell Metab 20:396–407CrossRefPubMedGoogle Scholar
  14. 14.
    Bartelt A, Heeren J (2014) Adipose tissue browning and metabolic health. Nat Rev Endocrinol 10:24–36CrossRefPubMedGoogle Scholar
  15. 15.
    Emont MP, Yu H, Wu J (2015) Transcriptional control and hormonal response of thermogenic fat. J Endocrinol 225:R35–R47CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Wu J, Jun H, McDermott JR (2015) Formation and activation of thermogenic fat. Trends Genet 31:232–238CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Berry DC, Stenesen D, Zeve D, Graff JM (2013) The developmental origins of adipose tissue. Development 140:3939–3949CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Gesta S, Tseng YH, Kahn CR (2007) Developmental origin of fat: tracking obesity to its source. Cell 131:242–256CrossRefPubMedGoogle Scholar
  19. 19.
    Lafontan M (2012) Historical perspectives in fat cell biology: the fat cell as a model for the investigation of hormonal and metabolic pathways. Am J Physiol Cell Physiol 302:C327–C359CrossRefPubMedGoogle Scholar
  20. 20.
    Lee YH, Petkova AP, Mottillo EP, Granneman JG (2012) In vivo identification of bipotential adipocyte progenitors recruited by beta3-adrenoceptor activation and high-fat feeding. Cell Metab 15:480–491CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Rosenwald M, Perdikari A, Rulicke T, Wolfrum C (2013) Bi-directional interconversion of brite and white adipocytes. Nat Cell Biol 15:659–667CrossRefPubMedGoogle Scholar
  22. 22.
    Wu J, Bostrom P, Sparks LM et al (2012) Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 150:366–376CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Zou P, Liu L, Zheng L et al (2014) Targeting FoxO1 with AS1842856 suppresses adipogenesis. Cell Cycle 13:3759–3767CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Emont MP, Yu H, Jun H et al (2015) Using a 3D culture system to differentiate visceral adipocytes in vitro. Endocrinology 156:4761–4768CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Longhua Liu
    • 1
  • Louise D. Zheng
    • 1
  • Sarah R. Donnelly
    • 1
  • Margo P. Emont
    • 2
  • Jun Wu
    • 2
  • Zhiyong Cheng
    • 1
  1. 1.Department of Human Nutrition, Foods and ExerciseFralin Life Science Institute, College of Agriculture and Life Science, Virginia TechBlacksburgUSA
  2. 2.Department of Molecular and Integrative PhysiologyLife Sciences Institute, University of MichiganAnn ArborUSA

Personalised recommendations