Advertisement

Genetic Mouse Models: The Powerful Tools to Study Fat Tissues

  • Xingxing Kong
  • Kevin W. Williams
  • Tiemin Liu
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1566)

Abstract

Obesity and Type 2 diabetes (T2D) are associated with a variety of comorbidities that contribute to mortality around the world. Although significant effort has been expended in understanding mechanisms that mitigate the consequences of this epidemic, the field has experienced limited success thus far. The potential ability of brown adipose tissue (BAT) to counteract obesity and metabolic disease in rodents (and potentially in humans) has been a topical realization. Recently, there is also another thermogenic fat cell called beige adipocytes, which are located among white adipocytes and share similar activated responses to cyclic AMP as classical BAT. In this chapter, we review contemporary molecular strategies to investigate the role of adipose tissue depots in metabolism. In particular, we will discuss the generation of adipose tissue-specific knockout and overexpression of target genes in various mouse models. We will also discuss how to use different Cre (cyclization recombination) mouse lines to investigate diverse types of adipocytes.

Key words

Adiponectin-cre Ucp1-cre Beige adipocyte Rosa26-loxp-stop-loxp 

Reference

  1. 1.
    Rosen ED, Spiegelman BM (2014) What we talk about when we talk about fat. Cell 156(1–2):20–44. doi: 10.1016/j.cell.2013.12.012 S0092-8674(13)01546-8 [pii]. Epub 2014/01/21. PubMed PMID: 24439368; PubMed Central PMCID: PMC3934003CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Wu J, Bostrom P, Sparks LM, Ye L, Choi JH, Giang AH et al (2012) Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 150(2):366–376. doi: 10.1016/j.cell.2012.05.016 S0092-8674(12)00595-8 [pii]. Epub 2012/07/17. PubMed PMID: 22796012; PubMed Central PMCID: PMC3402601CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB et al (2009) Identification and importance of brown adipose tissue in adult humans. N Engl J Med 360(15):1509–1517. doi: 10.1056/NEJMoa0810780 360/15/1509 [pii]. Epub 2009/04/10. PubMed PMID: 19357406; PubMed Central PMCID: PMC2859951CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Mirbolooki MR, Constantinescu CC, Pan ML, Mukherjee J (2011) Quantitative assessment of brown adipose tissue metabolic activity and volume using 18F-FDG PET/CT and β3-adrenergic receptor activation. EJNMMI Res 1(1):30. doi: 10.1186/2191-219X-1-30 2191-219X-1-30 [pii]. Epub 2012/01/05. PubMed PMID: 22214183; PubMed Central PMCID: PMC3250993CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Virtanen KA, Lidell ME, Orava J, Heglind M, Westergren R, Niemi T et al (2009) Functional brown adipose tissue in healthy adults. N Engl J Med 360(15):1518–1525. doi: 10.1056/NEJMoa0808949 360/15/1518 [pii]. Epub 2009/04/10. PubMed PMID: 19357407CrossRefPubMedGoogle Scholar
  6. 6.
    von Heydebreck A, Huber W, Poustka A, Vingron M (2001) Identifying splits with clear separation: a new class discovery method for gene expression data. Bioinformatics 17(Suppl 1):S107–S114 Epub 2001/07/27. PubMed PMID: 11472999CrossRefGoogle Scholar
  7. 7.
    Orava J, Nuutila P, Lidell ME, Oikonen V, Noponen T, Viljanen T et al (2011) Different metabolic responses of human brown adipose tissue to activation by cold and insulin. Cell Metab 14(2):272–279. doi: 10.1016/j.cmet.2011.06.012 S1550-4131(11)00261-0 [pii]. Epub 2011/08/02. PubMed PMID: 21803297CrossRefPubMedGoogle Scholar
  8. 8.
    Seale P, Conroe HM, Estall J, Kajimura S, Frontini A, Ishibashi J et al (2011) Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice. J Clin Invest 121(1):96–105. doi: 10.1172/JCI44271 44271 [pii]. Epub 2010/12/03. PubMed PMID: 21123942; PubMed Central PMCID: PMC3007155CrossRefPubMedGoogle Scholar
  9. 9.
    Petrovic N, Walden TB, Shabalina IG, Timmons JA, Cannon B, Nedergaard J (2010) Chronic peroxisome proliferator-activated receptor gamma (PPARgamma) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1-containing adipocytes molecularly distinct from classic brown adipocytes. J Biol Chem 285(10):7153–7164. doi: 10.1074/jbc.M109.053942 M109.053942 [pii]. Epub 2009/12/24. PubMed PMID: 20028987; PubMed Central PMCID: PMC2844165CrossRefPubMedGoogle Scholar
  10. 10.
    Ishibashi J, Seale P (2010) Medicine. Beige can be slimming. Science 328(5982):1113–1114. doi: 10.1126/science.1190816 science.1190816 [pii]. Epub 2010/05/08. PubMed PMID: 20448151; PubMed Central PMCID: PMC2907667CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Seale P, Bjork B, Yang W, Kajimura S, Chin S, Kuang S et al (2008) PRDM16 controls a brown fat/skeletal muscle switch. Nature 454(7207):961–967. doi: 10.1038/nature07182 nature07182 [pii]. Epub 2008/08/23. PubMed PMID: 18719582; PubMed Central PMCID: PMC2583329CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Dhillon H, Zigman JM, Ye C, Lee CE, McGovern RA, Tang V et al (2006) Leptin directly activates SF1 neurons in the VMH, and this action by leptin is required for normal body-weight homeostasis. Neuron 49(2):191–203 PubMed PMID: 16423694CrossRefPubMedGoogle Scholar
  13. 13.
    Kang S, Kong X, Rosen ED (2014) Adipocyte-specific transgenic and knockout models. Methods Enzymol 537:1–16. doi: 10.1016/B978-0-12-411619-1.00001-X B978-0-12-411619-1.00001-X [pii]. Epub 2014/02/01. PubMed PMID: 24480338CrossRefPubMedGoogle Scholar
  14. 14.
    Soriano P (1999) Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet 21(1):70–71. doi: 10.1038/5007 Epub 1999/01/23. PubMed PMID: 9916792CrossRefPubMedGoogle Scholar
  15. 15.
    Graves RA, Tontonoz P, Platt KA, Ross SR, Spiegelman BM (1992) Identification of a fat cell enhancer: analysis of requirements for adipose tissue-specific gene expression. J Cell Biochem 49(3):219–224. doi: 10.1002/jcb.240490303 Epub 1992/07/01. PubMed PMID: 1644859CrossRefPubMedGoogle Scholar
  16. 16.
    Ross SR, Graves RA, Greenstein A, Platt KA, Shyu HL, Mellovitz B et al (1990) A fat-specific enhancer is the primary determinant of gene expression for adipocyte P2 in vivo. Proc Natl Acad Sci U S A 87(24):9590–9594 Epub 1990/12/01. PubMed PMID: 2263614; PubMed Central PMCID: PMC55218CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Barlow C, Schroeder M, Lekstrom-Himes J, Kylefjord H, Deng CX, Wynshaw-Boris A et al (1997) Targeted expression of Cre recombinase to adipose tissue of transgenic mice directs adipose-specific excision of loxP-flanked gene segments. Nucleic Acids Res 25(12):2543–2545 doi: gka413 [pii]. Epub 1997/06/15. PubMed PMID: 9171115; PubMed Central PMCID: PMC146759CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Abel ED, Peroni O, Kim JK, Kim YB, Boss O, Hadro E et al (2001) Adipose-selective targeting of the GLUT4 gene impairs insulin action in muscle and liver. Nature 409(6821):729–733. doi: 10.1038/35055575 Epub 2001/02/24. PubMed PMID: 11217863CrossRefPubMedGoogle Scholar
  19. 19.
    He W, Barak Y, Hevener A, Olson P, Liao D, Le J et al (2003) Adipose-specific peroxisome proliferator-activated receptor gamma knockout causes insulin resistance in fat and liver but not in muscle. Proc Natl Acad Sci U S A 100(26):15712–15717. doi: 10.1073/pnas.2536828100 2536828100 [pii]. Epub 2003/12/09. PubMed PMID: 14660788; PubMed Central PMCID: PMC307633CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Eguchi J, Wang X, Yu S, Kershaw EE, Chiu PC, Dushay J et al (2011) Transcriptional control of adipose lipid handling by IRF4. Cell Metab 13(3):249–259. doi: 10.1016/j.cmet.2011.02.005 Epub 2011/03/02. PubMed PMID: 21356515; PubMed Central PMCID: PMC3063358CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Imai T, Jiang M, Chambon P, Metzger D (2001) Impaired adipogenesis and lipolysis in the mouse upon selective ablation of the retinoid X receptor alpha mediated by a tamoxifen-inducible chimeric Cre recombinase (Cre-ERT2) in adipocytes. Proc Natl Acad Sci U S A 98(1):224–228. doi: 10.1073/pnas.011528898 011528898 [pii]. Epub 2001/01/03. PubMed PMID: 11134524; PubMed Central PMCID: PMC14572PubMedGoogle Scholar
  22. 22.
    Wang ZV, Deng Y, Wang QA, Sun K, Scherer PE (2010) Identification and characterization of a promoter cassette conferring adipocyte-specific gene expression. Endocrinology 151(6):2933–2939. doi: 10.1210/en.2010-0136 en.2010-0136 [pii]. Epub 2010/04/07. PubMed PMID: 20363877; PubMed Central PMCID: PMC2875825CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Kong X, Banks A, Liu T, Kazak L, Rao RR, Cohen P et al (2014) IRF4 is a key thermogenic transcriptional partner of PGC-1alpha. Cell 158(1):69–83. doi: 10.1016/j.cell.2014.04.049 S0092-8674(14)00723-5 [pii]. Epub 2014/07/06. PubMed PMID: 24995979; PubMed Central PMCID: PMC4116691CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Kos CH (2004) Cre/loxP system for generating tissue-specific knockout mouse models. Nutr Rev 62(6 Pt 1):243–246 Epub 2004/08/05. PubMed PMID: 15291397PubMedGoogle Scholar
  25. 25.
    Beard C, Hochedlinger K, Plath K, Wutz A, Jaenisch R (2006) Efficient method to generate single-copy transgenic mice by site-specific integration in embryonic stem cells. Genesis 44(1):23–28. doi: 10.1002/gene.20180 Epub 2006/01/10. PubMed PMID: 16400644CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Division of Endocrinology, Beth Israel Deaconess Medical Center and Harvard Medical SchoolHarvard UniversityBostonUSA
  2. 2.Division of Hypothalamic ResearchThe University of Texas Southwestern Medical Center at DallasDallasUSA

Personalised recommendations