Isolation, Primary Culture, and Differentiation of Preadipocytes from Mouse Brown Adipose Tissue

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1566)

Abstract

Evolutionally, brown adipose tissue (BAT) is developed for nonshivering thermogenesis to prevent hypothermia. BAT has a high capacity to dissipate chemical energy generated from metabolism of nutrients for heat production. Therefore when BAT is activated, nutrients are “burned’ instead of being stored. This feature makes BAT an attractive target for obesity treatment. To investigate BAT function and regulation, brown adipocyte culturing is indispensable. This chapter describes a detailed protocol for isolation, primary culture, and differentiation of preadipocytes from mouse BAT. The preadipocytes can be used for investigating the regulation of brown fat cell differentiation. The differentiated brown adipocytes maintain major BAT features including high expression of uncoupling protein-1 and can be used to study BAT biology and pharmacology.

Key words

Brown adipose tissue Preadipocytes Isolation Culture Differentiation 

References

  1. 1.
    Hill JO, Wyatt HR, Peters JC (2012) Energy balance and obesity. Circulation 126:126–132CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Kajimura S, Spiegelman BM, Seale P (2015) Brown and beige fat: physiological roles beyond heat generation. Cell Metab 22:546–559CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Rosen ED, Spiegelman BM (2014) What we talk about when we talk about fat. Cell 156:20–44CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Schulz TJ, Tseng YH (2013) Brown adipose tissue: development, metabolism and beyond. Biochem J 453:167–178CrossRefPubMedGoogle Scholar
  5. 5.
    Feldmann HM, Golozoubova V, Cannon B, Nedergaard J (2009) UCP1 ablation induces obesity and abolishes diet-induced thermogenesis in mice exempt from thermal stress by living at thermoneutrality. Cell Metab 9:203–209CrossRefPubMedGoogle Scholar
  6. 6.
    Gospodarska E, Nowialis P, Kozak LP (2015) Mitochondrial turnover: a phenotype distinguishing brown adipocytes from interscapular brown adipose tissue and white adipose tissue. J Biol Chem 290:8243–8255CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Nedergaard J, Golozoubova V, Matthias A, Asadi A, Jacobsson A, Cannon B (2001) UCP1: the only protein able to mediate adaptive non-shivering thermogenesis and metabolic inefficiency. Biochim Biophys Acta 1504:82–106CrossRefPubMedGoogle Scholar
  8. 8.
    Betz MJ, Enerback S (2015) Human brown adipose tissue: what we have learned so far. Diabetes 64:2352–2360CrossRefPubMedGoogle Scholar
  9. 9.
    Schulz TJ, Tseng YH (2013) Brown adipose tissue: development, metabolism and beyond. Biochem J 453:167–178CrossRefPubMedGoogle Scholar
  10. 10.
    Cypess AM, Haft CR, Laughlin MR, Hu HH (2014) Brown fat in humans: consensus points and experimental guidelines. Cell Metab 20:408–415CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, Kuo FC, Palmer EL, Tseng YH, Doria A, Kolodny GM, Kahn CR (2009) Identification and importance of brown adipose tissue in adult humans. N Engl J Med 360:1509–1517CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Nedergaard J, Bengtsson T, Cannon B (2010) Three years with adult human brown adipose tissue. Ann N Y Acad Sci 1212:E20–E36CrossRefPubMedGoogle Scholar
  13. 13.
    van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, Drossaerts JM, Kemerink GJ, Bouvy ND, Schrauwen P, Teule GJ (2009) Cold-activated brown adipose tissue in healthy men. N Engl J Med 360:1500–1508CrossRefPubMedGoogle Scholar
  14. 14.
    Yoneshiro T, Aita S, Matsushita M, Kayahara T, Kameya T, Kawai Y, Iwanaga T, Saito M (2013) Recruited brown adipose tissue as an antiobesity agent in humans. J Clin Invest 123:3404–3408CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Cypess AM, Weiner LS, Roberts-Toler C, Franquet Elia E, Kessler SH, Kahn PA, English J, Chatman K, Trauger SA, Doria A, Kolodny GM (2015) Activation of human brown adipose tissue by a beta3-adrenergic receptor agonist. Cell Metab 21:33–38CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Aune UL, Ruiz L, Kajimura S (2013) Isolation and differentiation of stromal vascular cells to beige/brite cells. J Vis Exp 73:50191Google Scholar
  17. 17.
    Cannon B, Nedergaard J (2001) Cultures of adipose precursor cells from brown adipose tissue and of clonal brown-adipocyte-like cell lines. Methods Mol Biol 155:213–224PubMedGoogle Scholar
  18. 18.
    Fasshauer M, Klein J, Kriauciunas KM, Ueki K, Benito M, Kahn CR (2001) Essential role of insulin receptor substrate 1 in differentiation of brown adipocytes. Mol Cell Biol 21:319–329CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Gentile P, Orlandi A, Scioli MG, Di Pasquali C, Bocchini I, Cervelli V (2012) Concise review: adipose-derived stromal vascular fraction cells and platelet-rich plasma: basic and clinical implications for tissue engineering therapies in regenerative surgery. Stem Cells Transl Med 1:230–236CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Shinoda K, Luijten IH, Hasegawa Y, Hong H, Sonne SB, Kim M, Xue R, Chondronikola M, Cypess AM, Tseng YH, Nedergaard J, Sidossis LS, Kajimura S (2015) Genetic and functional characterization of clonally derived adult human brown adipocytes. Nat Med 21:389–394Google Scholar
  21. 21.
    Xue R, Lynes MD, Dreyfuss JM, Shamsi F, Schulz TJ, Zhang H, Huang TL, Townsend KL, Li Y, Takahashi H, Weiner LS, White AP, Lynes MS, Rubin LL, Goodyear LJ, Cypess AM, Tseng YH. (2015) Clonal analyses and gene profiling identify genetic biomarkers of the thermogenic potential of human brown and white preadipocytes, Nat Med 21:767–868.Google Scholar
  22. 22.
    Lee MJ, Fried SK (2014) Optimal protocol for the differentiation and metabolic analysis of human adipose stromal cells. Methods Enzymol 538:49–65.Google Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  1. 1.Department of GeriatricsThe Second Affiliated Hospital of Nanjing Medical UniversityNanjingChina
  2. 2.Department of Medicine, Physiology and Biophysics, Center for Diabetes Research and Treatment, Center for Epigenetics and MetabolismUniversity of California IrvineIrvineUSA
  3. 3.Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical CenterHarvard medical School, Harvard UniversityBostonUSA

Personalised recommendations