Skip to main content

Invention and Early History of Morpholinos: From Pipe Dream to Practical Products

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1565))

Abstract

Beginning with my concept in 1969 to treat disease at the nucleic acid level using antisense nucleic acids, antisense has evolved to the current Morpholino oligos. Morpholinos have been the dominant gene knockdown system in developmental biology. Lack of delivery technologies has limited their use in adult animals (including humans), though alteration in muscles in Duchenne muscular dystrophy (DMD) allows delivery into adult muscle. Morpholinos are currently in Phase 3 clinical trials for DMD and a Morpholino oligo for skipping dystrophin exon 51 has been approved by the US FDA. With improved delivery techniques, such as those in development at Gene Tools, therapeutic Morpholinos for many difficult-to-treat diseases will be possible. Initial applications are expected to be custom cocktails of delivery-enabled Morpholinos for treating cancers.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Ekker S (2000) Morphants: a new systematic vertebrate functional genomics approach. Yeast 17:302–306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Heasman J (2002) Morpholino oligos: making sense of antisense? Dev Biol 243:209–214

    Article  CAS  PubMed  Google Scholar 

  3. SPECIAL ISSUE (2001) Morpholino gene knockdowns – all 27 research reports in the July issue of the journal Genesis 30:89–200

    Google Scholar 

  4. Summerton J (1979) Intracellular inactivation of specific nucleotide sequences: a general approach to the treatment of viral diseases and viral-mediated cancers. J Theor Biol 78:77–99

    Article  CAS  PubMed  Google Scholar 

  5. Summerton J (1979) Sequence-specific crosslinking agents for nucleic acids: design and functional group testing. J Theor Biol 78:61–75

    Article  CAS  PubMed  Google Scholar 

  6. Summerton J, Hoenig S, Butler C, Chvapil M (1977) The mechanism of hemolysis by silica and its bearing on silicosis. Exp Mol Pathol 26:113–128

    Article  CAS  PubMed  Google Scholar 

  7. Summerton J, Bartlett P (1978) Sequence-specific crosslinking agents for nucleic acids. Use of 6-bromo-5,5dimethoxyhexanohydrazide for crosslinking cytidine to guanosine and crosslinking RNA to complementary sequences of DNA. J Mol Biol 122:145–162

    Article  CAS  PubMed  Google Scholar 

  8. Stephenson M, Zamecnik P (1978) Inhibition of Rous sarcoma viral RNA translation by a specific oligodeoxyribonucleotide. Proc Natl Acad Sci U S A 75:285–288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zamecnik P, Stephenson M (1978) Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. Proc Natl Acad Sci U S A 75:280–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Miller PS, Yano J, Yano E, Carroll C, Jayaraman K, Ts’o POP (1979) Nonionic nucleic acid analogues. Synthesis and characterization of didexoyribonucleoside methylphosphonates. Biochemistry 18:5134–5143

    Article  CAS  PubMed  Google Scholar 

  11. Miller PS, Agris CH, Blake KR, Murakami A, Spitz SA, Reddy MP, Ts’o POP (1983) Nonionic oligonucleoside analogs as new tools for studies on the structure and function of nucleic acids inside living cells. In: Pullman B, Jortner J (eds) Nucleic acids: the vectors of life. D. Reidel Publishing, Dordrecht, p 521

    Chapter  Google Scholar 

  12. Blake KR, Murakami A, Spitz SA, Glave SA, Reddy MP, Ts’o POP, Miller PS (1985) Hybridization arrest of globin synthesis in rabbit reticulocyte cells by oligodeoxyribonucleoside methylphosphonates. Biochemistry 24:6139–6145

    Article  CAS  PubMed  Google Scholar 

  13. Miller P, Barrett J, Ts’o P (1974) Synthesis of oligodeoxyribonucleotide ethylphosphotriesters and their specific complex formation with transfer ribonucleic acid. Biochemistry 13:4887–4986

    Article  CAS  PubMed  Google Scholar 

  14. Stirchak E, Summerton J, Weller D (1987) Uncharged stereoregular nucleic acid analogues. 1. Synthesis of a cytosine-containing oligomer with carbamate internucleoside linkages. J Org Chem 52:4202–4206

    Article  CAS  Google Scholar 

  15. Stirchak E, Summerton J, Weller D (1989) Uncharged stereoregular nucleic acid analogues. 2. Morpholino nucleoside oligomers with carbamate internucleoside linkages. Nucleic Acids Res 17:6129–6141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Summerton J., and Weller D. (1993) Uncharged Morpholino-based polymers having phosphorous containing chiral inter-subunit linkages. US Patent 5,185,444.

    Google Scholar 

  17. Summerton J, Weller D (1997) Morpholino antisense oligomers: design, preparation, and properties. Antisense Nucleic Acid Drug Dev 7:187–195

    Article  CAS  PubMed  Google Scholar 

  18. Summerton J, Stein D, Huang S, Matthews P, Weller D, Partridge M (1997) Morpholino and phosphorothioate antisense oligomers compared in cell-free and in-cell systems. Antisense Nucleic Acid Drug Dev 7:63–70

    Article  CAS  PubMed  Google Scholar 

  19. Summerton J (1999) Morpholino antisense oligomers: the case for an RNase H-independent structural type. Biochim Biophys Acta 1489:141–158

    Article  CAS  PubMed  Google Scholar 

  20. Summerton J (2006) Chapter 6: Morpholinos and PNAs compared. In: Christopher J, Matthew D (eds) Peptide nucleic acids, morpholinos and related antisense biomolecules. Springer, New York, NY, pp 89–113

    Chapter  Google Scholar 

  21. Summerton J (2007) Morpholinos, siRNA, and S-DNA compared: impact of structure and mechanism of action on off-target effects and sequence specificity. Curr Top Med Chem 7:651–660

    Article  CAS  PubMed  Google Scholar 

  22. Wilczynska A, Bushell M (2015) The complexity of miRNA-mediated repression. Cell Death Differ 22:22–33

    Article  CAS  PubMed  Google Scholar 

  23. Matsukura M, Shinozuka K, Zon G, Mitsuya H, Reitz M, Cohen JS, Broder S (1987) Phosphorothioate analogs of oligodeoxynucleotides: inhibitors of replication and cytopathic effects of human immunodeficiency virus. Proc Natl Acad Sci U S A 84:7706–7710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Agrawal S, Goodchild J, Civeira MP, Thornton AH, Sarin PS, Zamecnik PC (1988) Oligodeoxynucleoside phosphoramidates and phosphorothioates as inhibitors of human immunodeficiency virus. Proc Natl Acad Sci U S A 85:7079–7083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Egholm M, Buchardt O, Christensen L, Behrens C, Freier SM, Driver DA, Berg RH, Kim SK, Norden B, Nielsen PE (1993) PNA hybridizes to complementary oligonucleotides obeying the Watson-Crick hydrogen bonding rules. Nature 365:566–568

    Article  CAS  PubMed  Google Scholar 

  26. Nielsen P, Egholm M (1999) Peptide nucleic acids protocols and applications. Horizon Scientific Press, Norfolk

    Google Scholar 

  27. Nielsen P (2006) Chapter 1: the many faces of PNA. In: Christopher J, Matthew D (eds) Peptide nucleic acids, morpholinos and related antisense biomolecules. Springer, New York, NY, pp 3–17

    Chapter  Google Scholar 

  28. Elbashir S, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498

    Article  CAS  PubMed  Google Scholar 

  29. Scherer L, Rossi J (2006) Chapter 8: recent applications of RNA interference (RNAi) in mammalian systems. In: Christopher J, Matthew D (eds) Peptide nucleic acids, morpholinos and related antisense biomolecules. Springer, New York, NY, pp 133–147

    Chapter  Google Scholar 

  30. Gruber J, Manninga H, Tuschl T, Osborn M, Weber K (2005) Specific RNAi mediated gene knockdown in zebrafish cell lines. RNA Biol 2:101–105

    Article  CAS  PubMed  Google Scholar 

  31. Summerton J (2016) Custom cocktail for curing any cancer: a strategy for destroying any cancer without harming the patient. J Drug Discov Dev Deliv 3(1): id 1020

    Google Scholar 

  32. Summerton J (2003) Custom cancer therapies: safe and effective treatments for most or all cancers. Ann NY Acad Sci 1002:189–196

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James E. Summerton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Summerton, J.E. (2017). Invention and Early History of Morpholinos: From Pipe Dream to Practical Products. In: Moulton, H., Moulton, J. (eds) Morpholino Oligomers. Methods in Molecular Biology, vol 1565. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6817-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6817-6_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6815-2

  • Online ISBN: 978-1-4939-6817-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics